27 апреля 2016

Квадратим квадратные квадраты

Теорема. Натуральное число n представимо в виде суммы двух квадратов тогда и только тогда, когда все его простые делители вида 4k + 3 входят в четных степенях.

Лемма 1. Пусть p > 2 — простое число. Сравнение $x^2 \equiv -1 \pmod{p}$ разрешимо тогда и только тогда, когда p = 4k + 1.

- Пусть x остаток по модулю p. Рассмотрим четверку чисел x, -x, x^{-1} , $-x^{-1}$. Докажите, что различные четверки не пересекаются.
- 2. Бывает ли так, что внутри четверки некоторые числа совпадают? В каких случаях это может произойти? Рассмотрите все варианты.
- 3. Посчитайте все четверки чисел по модулю p для случаев p = 4k + 1 и p = 4k + 3. Докажите лемму 1.

Лемма 2. Пусть p = 4k + 1. Тогда при некоторых a и b выполняется $p = a^2 + b^2$.

Пусть $s^2 \equiv -1 \pmod{p}$, $M = \{0, 1, 2, ..., \lceil \sqrt{p} \rceil \}$, $x, y \in M$.

- **4.** Докажите, что количество различных пар чисел (x, y) больше p.
- **5.** Докажите, что при некоторых x_1, y_1, x_2, y_2 выполнено $x_1 + sy_1 \equiv x_2 + sy_2 \pmod{p}$.
- Пусть $a = x_1 x_2$, $b = y_1 y_2$. Докажите, что $a^2 + b^2 \equiv 0 \pmod{p}$. 6.
- Докажите, что $a^2 + b^2 = p$.

Лемма 3. Пусть некоторые m, n представимы в виде суммы двух квадратов. Тогда их произведение $m \cdot n$ тоже представимо.

Рассмотрим два комплексных числа $z_1 = a_1 + ib_1$ и $z_2 = a_2 + ib_2$. Чему равно их произведение? Чему равно произведение $|z_1|^2 \cdot |z_2|^2$? Докажите лемму 3.

Лемма 4. Пусть $n = a^2 + b^2$, p = 4k + 3, $p \mid n$. Тогда $p \mid a \bowtie p \mid b$.

- Воспользуйтесь леммой 1 и докажите лемму 4.
- **Следствие.** Пусть $n = a^2 + b^2$, p = 4k + 3, $p \mid n$. Тогда $p^2 \mid n$. 10.
- При помощи лемм 2-4 докажите теорему. 11.