Геометрический разнобой

11 класс 15.12.14

- 1. В выпуклом четырёхугольнике $ABCD \angle CBD = \angle CAB$, $\angle ACD = \angle ADB$. Докажите, что из отрезков BC, AD, AC можно сложить прямоугольный треугольник.
- 2. В треугольнике ABC проведена чевиана AA_1 . Оказалось, что вписанные окружности треугольников AA_1B и AA_1C равны. Докажите, что и вневписанные окружности этих треугольников, лежащие напротив вершины A, тоже равны.
- 3. Высоты BB_1 и CC_1 остроугольного треугольника ABC пересекаются в точке H. Описанные окружности треугольников ABC и AB_1C_1 пересекаются в точке K. Докажите, что KH делит отрезок BC пополам.
- 4. Окружность с центром I вписана в треугольник ABC и касается его сторон BC, AC, AB в точках A_1, B_1, C_1 соответственно. На отрезке BC_1 нашлась точка K такая, что IK = IC. Докажите, что середина отрезка KC лежит на отрезке A_1C_1 .
- 5. В равнобедренном треугольнике ABC (AB=BC) проведена биссектриса CD. Прямая, перпендикулярная CD и проходящая через центр описанной около треугольника ABC окружности, пересекает BC в точке E. Прямая, проходящая через точку E параллельно CD, пересекает AB в точке F. Докажите, что BE=FD.
- 6. В равнобедренном треугольнике ABC (AB = BC) угол $\angle B = 80^{\circ}$. Внутри ABC выбрана точка D такая, что $\angle DAC = 30^{\circ}$, $\angle DCA = 10^{\circ}$. Найдите угол $\angle BDC$.
- 7. Трапеция ABCD~(AB||CD) такова, что на её сторонах AD и BC существуют точки P и Q соответственно, удовлетворяющие условиям: $\angle APB = \angle CPD$, $\angle AQB = \angle CQD$. Докажите, что точки P и Q равноудалены от точки пересечения диагоналей трапеции.