Разнобой

11 класс 09.10.2014

- 1. По кругу расставлены 2014 чисел, каждое из которых 1 или −1 (при этом не все одинаковые). Рассматриваются всевозможные блоки из тринадцати подряд идущих чисел, в каждом из них считается произведение, а потом все вычисленные произведения суммируются. Какое максимальное значение может принимать полученная сумма?
- 2. Докажите, что существует бесконечно много натуральных n, таких что у n^4+1 есть простой делитель, превосходящий 2n.
- 3. На описанной окружности треугольника ABC взята точка P. Из неё опущены перпендикуляры на стороны, основания которых обозначили A_1 , B_1 , C_1 . Прямые B_1P и C_1P вторично пересекают описанную окружность в точках C_2 , B_2 соответственно. A_2 точка пересечения прямых B_1C_1 и B_2C_2 . Докажите, что A_1 и A_2 равноудалены от центра описанной окружности треугольника.
- 4. Даны вещественные числа a_0, \ldots, a_n . Известно, что для некоторого y из интервала (0,1) верно

$$\frac{a_0}{1-y} + \frac{a_1}{1-y^2} + \ldots + \frac{a_n}{1-y^{n+1}} = 0.$$

Докажите, что для некоторого x из интервала (0,1) выполнено $a_0+a_1x+a_2x^2+\ldots+a_nx^n=0$.

Разнобой

11 класс 09.10.2014

- 1. По кругу расставлены 2014 чисел, каждое из которых 1 или −1 (при этом не все одинаковые). Рассматриваются всевозможные блоки из тринадцати подряд идущих чисел, в каждом из них считается произведение, а потом все вычисленные произведения суммируются. Какое максимальное значение может принимать полученная сумма?
- 2. Докажите, что существует бесконечно много натуральных n, таких что у n^4+1 есть простой делитель, превосходящий 2n.
- 3. На описанной окружности треугольника ABC взята точка P. Из неё опущены перпендикуляры на стороны, основания которых обозначили A_1 , B_1 , C_1 . Прямые B_1P и C_1P вторично пересекают описанную окружность в точках C_2 , B_2 соответственно. A_2 точка пересечения прямых B_1C_1 и B_2C_2 . Докажите, что A_1 и A_2 равноудалены от центра описанной окружности треугольника.
- 4. Даны вещественные числа a_0, \ldots, a_n . Известно, что для некоторого y из интервала (0,1) верно

$$\frac{a_0}{1-y} + \frac{a_1}{1-y^2} + \ldots + \frac{a_n}{1-y^{n+1}} = 0.$$

Докажите, что для некоторого x из интервала (0,1) выполнено $a_0 + a_1x + a_2x^2 + \ldots + a_nx^n = 0$.