- **1.** Натуральные числа x, y таковы, что $HOД(x^7, y^4) \cdot HOД(x^8, y^5) = xy$. Докажите, что xy точный куб.
- **2.** Во вписанном четырехугольнике $ABCD\ O$ точка пересечения диагоналей. Точка O_1 симметрична O относительно AD и лежит на описанной окружности. Докажите, что O_1O биссектриса угла BO_1C .
- **3.** Функция $f: \mathbb{R} \to \mathbb{R}$ непрерывна. Для каждого $x \in \mathbb{R}$ имеет место равенство $f(x) \cdot f(f(x)) = 1$. Известно, что f(1000) = 999. Найдите f(500).
- 4. Два игрока по очереди проводят диагонали в правильном (2n+1) угольнике (n>1). Разрешается проводить диагональ, если она пересекается (по внутренним точкам) с чётным числом ранее проведённых диагоналей (и не была проведена раньше). Проигрывает игрок, который не может сделать очередной ход. Кто выигрывает при правильной игре?
- **5.** На доске написан квадратный трёхчлен $p(x) = ax^2 + bx + c \ (a \neq 0)$. Вместо трёхчлена p(x) записывают трёхчлен $\frac{p(x-1)+p(x+1)}{2}$, а исходный трёхчлен стирают. Докажите, что через несколько таких замен получится трёхчлен, не имеющий корней.
- **6.** Натуральный ряд чисел разбит на две бесконечные части так, что любая тройка чисел из какой-либо части дает в сумме число, принадлежащее той же части. Докажите, что нечётные числа принадлежат одной части, а чётные другой.
- **7.** Найдите все пары натуральных m, n, такие, что $n^5 + n^4 = 7^m 1.$
- 8. В остроугольном треугольнике ABC проведены высоты AA_1 и BB_1 . Биссектриса угла ACB пересекает эти высоты в точках F и L. Докажите, что середина отрезка FL равноудалена от точек A_1 и B_1 .

9 класс Разнобой 24 февраля 2014

- **1.** Натуральные числа x, y таковы, что $HOД(x^7, y^4) \cdot HOД(x^8, y^5) = xy$. Докажите, что xy точный куб.
- **2.** Во вписанном четырехугольнике $ABCD\ O$ точка пересечения диагоналей. Точка O_1 симметрична O относительно AD и лежит на описанной окружности. Докажите, что O_1O биссектриса угла BO_1C .
- **3.** Функция $f: \mathbb{R} \to \mathbb{R}$ непрерывна. Для каждого $x \in \mathbb{R}$ имеет место равенство $f(x) \cdot f(f(x)) = 1$. Известно, что f(1000) = 999. Найдите f(500).
- **4.** Два игрока по очереди проводят диагонали в правильном (2n+1) угольнике (n>1). Разрешается проводить диагональ, если она пересекается (по внутренним точкам) с чётным числом ранее проведённых диагоналей (и не была проведена раньше). Проигрывает игрок, который не может сделать очередной ход. Кто выигрывает при правильной игре?
- **5.** На доске написан квадратный трёхчлен $p(x) = ax^2 + bx + c \ (a \neq 0)$. Вместо трёхчлена p(x) записывают трёхчлен $\frac{p(x-1)+p(x+1)}{2}$, а исходный трёхчлен стирают. Докажите, что через несколько таких замен получится трёхчлен, не имеющий корней.
- **6.** Натуральный ряд чисел разбит на две бесконечные части так, что любая тройка чисел из какой-либо части дает в сумме число, принадлежащее той же части. Докажите, что нечётные числа принадлежат одной части, а чётные другой.
- **7.** Найдите все пары натуральных m, n, такие, что $n^5 + n^4 = 7^m 1.$
- 8. В остроугольном треугольнике ABC проведены высоты AA_1 и BB_1 . Биссектриса угла ACB пересекает эти высоты в точках F и L. Докажите, что середина отрезка FL равноудалена от точек A_1 и B_1 .