Окружность Аполлония

- **1.** Дан отрезок AB и положительное число k. Докажите, что при $k \neq 1$ множество точек X, удовлетворяющих условию $\frac{AX}{BX} = k$ это окружность, центр которой лежит на прямой AB.
- **2.** Обозначим за Ω_a окружность, построенную как на диаметре на отрезке, соединяющем основания внешней и внутренней биссектрис треугольника ABC, проведенных из вершины A. Окружности Ω_b и Ω_c определяются аналогично.
 - (a) Докажите, что три построенные окружности имеют две общие точки, которые называются двумя *точками Аполюния*.
 - (b) Точка A_1 на прямой BC такова, что прямая A_1A касается окружности (ABC). Точки B_1 и C_1 определяются аналогично. Выведите из предыдущего пункта, что точки A_1 , B_1 и C_1 лежат на одной прямой.
- 3. Докажите, что на прямой, соединяющей две точки Аполлония треугольника лежит:
 - (а) Центр описанной около этого треугольника окружности.
 - (b) Точка Лемуана этого треугольника.
 - (с) Ортоцентр треугольника, вершины которого являются основаниями внутренних биссектрис треугольника.
- **4.** (a) Докажите, что точки Аполлония изогонально сопряжены двум точкам Торричелли треугольника.
 - (b) Докажите, что проекции точки Аполлония на стороны треугольника являются вершинами равностороннего треугольника.
- **5. Теорема.** В треугольнике ABC проведена тройка чевиан AA_1 , BB_1 и CC_1 , пересекающиеся в одной точке. Прямая B_1C_1 пересекает BC в точке A_2 , точки B_2 и C_2 определяются аналогично. Обозначим за Ω_a окружность, построенную на отрезке A_1A_2 как на диаметре, аналогично определим окружности Ω_b и Ω_c .
 - (a) Докажите, что степень центра описанной окружности треугольника (ABC) одна и та же относительно всех трех построенных окружностей.
 - (b) Докажите, что степень ортоцетра треугольника $A_1B_1C_1$ одинакова относительно всех трех построенных окружностей.
 - (c) Докажите, что середины отрезков A_1A_2 , B_1B_2 и C_1C_2 лежат на одной прямой ℓ .
 - (d) Докажите, что прямая, соединяющая ортоцентр треугольникика $A_1B_1C_1$ с центром описанной окружности треугольника ABC перпендикулярна прямой ℓ .
- **6.** Дан треугольник ABC и такая точка P, что AP:BC=BP:CA=CP:AB. Докажите, что точка P лежит на прямой Эйлера треугольника ABC.