группа: Убегающие

4 декабря 2020 г.

Показатели

Если вы уверенно знаете, как решать задачу 0, то её можно не сдавать. Если сомневаетесь — сдавайте.

0. Пусть a и n — взаимно простые натуральные числа. Докажите, что последовательность остатков чисел 1, a, a^2 , a^3 , ...по модулю n периодическая без предпериода.

Определение. Показателем числа n по модулю a называется наименьшее натуральному d такое, что $a^d \equiv 1 \pmod{n}$. В терминах предыдущей задачи d — это длина минимального периода.

- **1.** Докажите, что $(a^n 1, a^m 1) = a^{(n,m)} 1$.
- **2.** Пусть d показатель a по модулю n.
 - (a) Докажите, что если $a^k \equiv 1 \pmod{n}$, то k делится на d.
 - **(b)** Докажите, что если $a^k \equiv a^l \pmod n$, то $k \equiv l \pmod d$.
 - (c) Докажите, что показатель a по модулю n является делителем $\varphi(n)$, где $\varphi(n)$ функция Эйлера. В частности, если n=p простое число, то d является делителем числа p-1.
- **3.** Пусть p простое число.
 - **(a)** Докажите, что все делители числа $2^p 1$ больше p.
 - **(b)** Докажите, что каждый простой делитель числа 2^p-1 имеет вид 2pk+1 для некоторого k.
- **4.** Пусть p простое число, d делитель числа p-1. Выберем среди остатков 1, 2, ..., p-1 те, чьи показатели по модулю p равны d. Докажите, что произведение всех выбранных чисел сравнимо с единицей по модулю p.
- **5. (а)** Докажите, что не существует натурального n > 1 такого, что $2^n 1$ делится на n.
 - **(b)** Пусть $3^n 1$ делится на n. Докажите, что если n > 2, то n кратно 4.
 - (c) Найдите все пары натуральных a и b таких, что 2^a-1 делится на b и 2^b-1 делится на a.
- **6.** Найдите все пары простых чисел p и q таких, что $(5^p-2^p)(5^q-2^q)$ делится на pq.