[2020-2021] группа: мега 8 17.10.2020 г.

Сравнения.

Определение. Разделить целое число a на натуральное число b — значит найти такие целые числа q и r, что a = bq + r. При этом требуется выполнение неравенства $0 \le r < b$. Числа q и r называются неполным частным и остатком при делении a на b.

Примеры.

- (a) Число 122 дает остаток 2 при делении на 10: $122 = 12 \cdot 10 + 2$;
- **(b)** Число -11 дает остаток 1 при делении на $3:-11=3\cdot(-4)+1$.

Мысль. Было бы гораздо удобнее, если бы можно было как-то легко обозначать, что числа a и bдают равные остатки при делении на какое-то число m.

Определение 1. Говорят, что числа a и b сравнимы по модулю m, если их разность делится на т.

Определение 2. Говорят, что числа a и b **сравнимы по модулю** m, если они дают одинаковые остатки при делении на т.

Обозначение. Это записывается так: $a \equiv b$.

- 0. Докажите, что Определение 1 и Определение 2 одно и то же:
 - (a) Если a и b дают одинаковые остатки при делении на m, то a-b делится на m;
 - **(b)** Если a-b делится на m, то a и b дают одинаковые остатки при делении на m.

Вывод. Слова «числа a и b дают равные остатки при делении на m» можно заменять на «a и bсравнимы по модулю m» в устной речи и на « $a \equiv b$ » в письменной.

Примеры:

 $122 \equiv 2;$

 $(-11) \equiv 1.$

Свойства сравнений:

- \cdot Если $a \equiv b \mod m$, то $a + c \equiv b + c \mod m$.
- \cdot Если $a \equiv b \mod m$, то $ac \equiv bc \mod m$.
- \cdot Если $a \equiv b \mod m$, a $b \equiv c \mod n$, то $a \equiv c \mod m$.
- \cdot Если $a \equiv b \mod m$, а $c \equiv d \mod n$, то $a + c \equiv b + d \mod m$.
- \cdot Если $a \equiv b \mod m$, а $c \equiv d \mod n$, то $ac \equiv bd \mod m$.
- \cdot Если $a \equiv b \mod m$, то $a^k \equiv b^k \mod m$.
- 1. Найдите остаток от деления:
 - (a) $1001 \cdot 1002 \cdot 1003 + 2001 \cdot 2001 \cdot 2002 \cdot 2003 \cdot 2004$ Ha 1000;
 - **(b)** $2015 \cdot 2016 \cdot 2017 \cdot 2018 \cdot 2019$ Ha 11;
 - (c) $2017 \cdot 2016 \cdot 2015 + 2019 \cdot 2020 \cdot 2021$ Ha 2018;
 - (d) $1 \cdot 3 \cdot 5 \cdot \dots \cdot 101 + 2 \cdot 4 \cdot 6 \cdot \dots \cdot 102$ Ha 103.
- 2. Найдите остаток от деления:
 - (a) 8^{2019} Ha 7: (b) 6^{2019} Ha 7: (c) 3^{2019} Ha 7.

- 3. Найдите остаток от деления:
 - (a) $9^{2019} + 13^{2019}$ Ha 11;
 - **(b)** $7^{2012} + 9^{2015}$ Ha 10;
 - (c) $9^{2018} + 13^{2018}$ Ha 11.
- **4.** Числа 2146, 1991 и 1805 сравнимы по модулю n. Найдите все возможные n.
- **5.** Докажите, что $1^{45} + 2^{45} + ... + 38^{45}$ делится на 13.
- **6.** Докажите, что число $5^{2019} + 18$ составное.
- 7. Пусть $3x + 7y \equiv 1 \pmod{11}$.
 - **(a)** Докажите, что $3x + 40y \equiv 1 \pmod{11}$;
 - **(b)** Найдите остаток от деления 14x 15y на 11;
 - **(c)** Найдите остаток от деления 6x + 3y на 11.