[2020–2021] группа: 9-2 17 мая 2021 г.

Повторяем композицию гомотетий

- **1.** (а) Даны две неравные окружности ω_1 и ω_2 . Окружность γ касается их внешним образом в точках A и B. Докажите, что прямая AB проходит через фиксированную точку, не зависящую от выбора γ .
 - **(b)** Даны две неравные окружности ω_1 и ω_2 . Окружность γ касается их внутренним образом в точках A и B. Докажите, что прямая AB проходит через фиксированную точку, не зависящую от выбора γ .
- **2.** Трапеции ABCD и APQD имеют общее основание AD. Докажите, что точки пересечения прямых AB и CD, AP и DQ, CQ и PB лежат на одной прямой.
- **3.** Продолжения сторон выпуклого четырёхугольника *ABCD* пересекаются в точках *P* и *Q*. На сторонах четырехугольника выбрали по точке так, что получился параллелограмм, причем одна пара его сторон параллельна *PQ*. Докажите, что центр параллелограмма лежит на одной из диагоналей четырёхугольника *ABCD*.
- **4.** В треугольнике ABC на стороне AB отметили точку D. Пусть ω_1 и Ω_1 , ω_2 и Ω_2 соответственно вписанные и вневписанные (касающиеся AB) окружности треугольников ACD и BCD. Докажите, что общие внешние касательные к ω_1 и ω_2 , Ω_1 и Ω_2 пересекаются на прямой AB.
- **5.** Дан треугольник ABC. Рассмотрим окружность, касающуюся внутренним образом описанной окружности треугольника ABC в точке P_A , а также сторон AB и AC. Аналогично определим точки P_B и P_C . Докажите, что прямые AP_A , BP_B и CP_C пересекаются в одной точке.
- **6.** Дан выпуклый четырёхугольник ABCD. Лучи AB, DC пересекаются в точке P, а лучи AD, BC в точке Q. Из точек P и Q внутрь углов APD и AQB проведено ещё по два луча, разбивающие четырёхугольник ABCD на девять частей. Известно, что в части, примыкающие к вершинам B, C, D, можно вписать окружность. Докажите, что в часть, примыкающую к вершине A, также можно вписать окружность.
- 7. Окружности ω_1 , ω_2 и ω_3 вписаны в углы треугольника *ABC*. Окружность Ω касается их внешним образом в точках A_1 , B_1 и C_1 соответственно.
 - (a) Докажите, что прямые AA_1 , BB_1 и CC_1 пересекаются в одной точке.
 - **(b)** Пусть радиусы ω_1 , ω_2 и ω_3 равны. Докажите, что центр Ω лежит на прямой, соединяющей центр вписанной и описанной окружностей треугольника *ABC*.
- **8.** Дан описанный четырёхугольник ABCD. Докажите, что точка пересечения диагоналей, центр вписанной окружности треугольника ABC и центр вневписанной окружности треугольника CDA, касающейся стороны AC, лежат на одной прямой.