[2020-2021]

группа: **9-2** *4 марта 2021 г.*

Корни из единицы

Напоминание. Формула Муавра: $(r(\cos \varphi + i \sin \varphi))^n = r^n(\cos n\varphi + i \sin n\varphi)$.

Определение. Корнем n-й степени из комплексного числа z называется комплексное число w такое, что $w^n = z$, обозначается $\sqrt[n]{z} = w$.

- **1.** Пусть $\alpha_1, \alpha_2, ..., \alpha_n$ корни *n*-ой степени из единицы.
 - (a) Докажите, что среди них можно выбрать корень α такой, что для любого α_i найдется целое число k такое, что $\alpha_i = \alpha^k$.
 - (b) Сколько существует таких корней?
- **2.** Докажите, что $x^{66} + x^{55} + x^{44} + x^{33} + x^{22} + x^{11} + 1$ делится на $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$.
- 3. Пусть $\alpha = \cos \frac{2\pi}{n} + i \cdot \sin \frac{2\pi}{n}$. Вычислите:
 - (a) $\alpha_0 \cdot \alpha_1 \cdot \cdots \cdot \alpha_{n-1}$;
 - **(b)** $\alpha_0 + \alpha_1 + \cdots + \alpha_{n-1}$.
- **4.** Вычислите сумму k-х степеней корней n-й степени из 1, где k, n натуральные числа, если
 - (a) HOД(k, n) = 1;
 - **(b)** HOД $(k, n) \neq 1$.
- 5. (a) Пусть $\alpha = \cos \frac{2\pi}{n} + i \cdot \sin \frac{2\pi}{n}$. Докажите, что

$$n = (1 - \alpha) \cdot (1 - \alpha^2) \cdot (1 - \alpha^3) \cdot \dots \cdot (1 - \alpha^{n-1}).$$

- **(b)** Для каких других корней n-ой степени из единицы это тождество выполняется?
- **(c)** Для нечетных n докажите, что

$$\sqrt{n} = \left| (1 - \alpha) \cdot (1 - \alpha^2) \cdot (1 - \alpha^3) \cdot \dots \cdot (1 - \alpha^{\frac{n-1}{2}}) \right|.$$

- **(d)** Выпишите аналогичное равенство для четного n.
- **6.** Найдите произведение длин всех сторон и диагоналей правильного n-угольника, вписанного в окружность радиуса R.
- 7. Вычислите $\sin \frac{\pi}{n} \cdot \sin \frac{2\pi}{n} \cdot \dots \cdot \sin \frac{\left[\frac{n-1}{2}\right]\pi}{n}$.
- **8.** Пусть ABCDE правильный пятиугольник, вписанный в окружность единичного радиуса, и точка A' диаметрально противоположна точке A. Вычислите $A'B \cdot A'C$.