Теоремы Чевы и Менелая в синусной форме

Конструкция все та же: дан треугольник ABC и точки A_1, B_1, C_1 на сторонах BC, AC и AB соответственно.

Теорема Чевы в синусах. Прямые AA_1, BB_1 и CC_1 конкуренты тогда и только тогда, когда

$$\frac{\sin \angle (AB, AA_1)}{\sin \angle (AA_1, AC)} \cdot \frac{\sin \angle (CA, CC_1)}{\sin \angle (CC_1, CB)} \cdot \frac{\sin \angle (BC, BB_1)}{\sin \angle (BB_1, BA)} = 1$$

Теорема Менелая в синусах. Точки A_1, B_1 и C_1 лежат на одной прямой тогда и только тогда, когда

$$\frac{\sin \angle (AB, AA_1)}{\sin \angle (AA_1, AC)} \cdot \frac{\sin \angle (CA, CC_1)}{\sin \angle (CC_1, CB)} \cdot \frac{\sin \angle (BC, BB_1)}{\sin \angle (BB_1, BA)} = -1$$

- **1.** Основная теорема о симедиане. Пусть касательные к описанное окружности треугольника ABC, проведенные в точках B и C пересекаются в точке P. Докажите, что $\angle BAP = \angle MAC$, где M середина стороны BC.
- **2.** На сторонах треугольника ABC вне его построены правильные треугольники BCA_1 , CAB_1 и ABC_1 . Доказать, что прямые AA_1 , BB_1 и CC_1 пересекаются в одной точке.
- **3.** В треугольнике *ABC* проведены биссектрисы AA', BB' и CC'. Пусть P точка пересечения A'B' и CC', а Q точка пересечения A'C' и BB'. Докажите, что $\angle PAC = \angle QAB$.
- **4.** В окружность вписан выпуклый шестиугольник *ABCDEF*. Докажите, что прямые AD, BE и CF пересекаются в одной точке тогда и только тогда, когда $AB \cdot CD \cdot EF = BC \cdot DE \cdot FA$.
- **5.** В остроугольном неравнобедренном треугольнике ABC с центром описанной окружности O проведены высоты BH_B и CH_C . Точки X и Y симметричны точкам H_B и H_C относительно середин сторон AC и AB соответственно. Докажите, что прямая AO делит отрезок XY пополам.
- **6.** Вписанная в треугольник ABC окружность с центром I касается сторон BC, CA, AB в точках A_1 , B_1 , C_1 соответственно. Точка M середина BC. Докажите, что прямые B_1C_1 , AM и IA_1 пересекаются в одной точке.
- 7. Пусть H ортоцентр треугольника ABC, X произвольная точка. Окружность с диаметром XH вторично пересекает прямые AH, BH, CH в точках A_1 , B_1 , C_1 , а прямые AX, BX, CX в точках A_2 , B_2 , C_2 . Доказать, что прямые A_1A_2 , B_1B_2 , C_1C_2 пересекаются в одной точке.

8. Смотрите на картинку.

