Возвращение линейной алгебры

Год назад на кружках в 10 классе серия занятий была посвящена введению в линейную алгебру. В частности, были даны аксиоматические определения основных понятий линейной алгебры и доказаны некоторые базовые свойства линейных пространств.

Вот примитивизированная, координатная версия:

Основные определения. Линейным вещественным n-мерным пространством \mathbb{R}^n будем называть множество упорядоченных наборов $(x_1, x_2, ..., x_n)$ из n вещественных чисел. Элементы линейного пространства называются векторами. В линейном пространстве определены операции сложения векторов и умножения вектора на число:

$$\mathbf{x} + \mathbf{y} = (x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) := (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n);$$
$$\lambda \cdot \mathbf{x} = \lambda \cdot (x_1, x_2, \dots, x_n) := (\lambda \cdot x_1, \lambda \cdot x_2, \dots, \lambda \cdot x_n).$$

Выражение вида $\lambda_1 \cdot \mathbf{v_1} + \lambda_2 \cdot \mathbf{v_2} + ... + \lambda_k \cdot \mathbf{v_k}$, где все $\lambda_i \in \mathbb{R}$, называется линейной комбинацией векторов $\mathbf{v_i}$. Набор векторов $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_k}$ называется линейно независимым, если единственная линейная комбинация этого набора, дающая в результате вектор $\mathbf{0}$ — тривиальная (это когда все $\lambda_i = 0$).

Самое полезное утверждение в этом листике. (Следствие из основной леммы о линейной зависимости): любые n+1 векторов в пространстве \mathbb{R}^n линейно зависимы.

Скалярным произведением двух векторов $\mathbf{x}=(x_1,x_2,...,x_n)$ и $\mathbf{y}=(y_1,y_2,...,y_n)$ назовём число

$$(\mathbf{x}, \mathbf{y}) := x_1 \cdot y_1 + x_2 \cdot y_2 + \dots + x_n \cdot y_n.$$

Легко проверить, что скалярное произведение линейно по каждому аргументу: при всех $\lambda, \mu \in \mathbb{R}$ выполнено $(\lambda \cdot \mathbf{u} + \mu \cdot \mathbf{v}, \mathbf{w}) = \lambda \cdot (\mathbf{u}, \mathbf{w}) + \mu \cdot (\mathbf{v}, \mathbf{w})$.

В некоторых задачах помогает понятие линейной функции: функция $\varphi: \mathbb{R}^n \to \mathbb{R}$ называется линейной, если она имеет вид

$$\varphi(\mathbf{x}) = \varphi((x_1, x_2, ..., x_n)) = \alpha_1 \cdot x_1 + \alpha_2 \cdot x_2 + ... + \alpha_n \cdot x_n,$$

где все $\alpha_i \in \mathbb{R}$ — фиксированные числа. Нетрудно убедиться, что линейная функция удовлетворяют равенству $\varphi(\lambda \mathbf{u} + \mu \mathbf{v}) = \lambda \varphi(\mathbf{u}) + \mu \varphi(\mathbf{v})$ при любых $\lambda, \mu \in \mathbb{R}$.

- 1. Два вектора пространства \mathbb{R}^n ортогональны, если их скалярное произведение равно 0. Докажите, что если несколько ненулевых векторов попарно ортогональны, то все эти векторы линейно независимы. Попробуйте какое-нибудь векторное равенство скалярно домножить на какой-нибудь вектор.
- **2.** Школьники с переменным успехов появлялись на онлайн-занятиях математического кружка. К концу карантина выяснилось, что каждый из школьников посетил ровно n занятий, а любые два школьника посетили одновременно ровно k занятий, причём k < n. Докажите, что количество занятий на карантине было не меньше числа школьников в группе.
- 3. Несколько школьников писали из дома в условиях самоизоляции финал ВсОШ по математике из 2^k простых задач с проверкой по ответам ($k \geqslant 2$). Каждый школьник решил правильно ровно половину задач. Оказалось, что любые два школьника ровно четверть всех задач решили оба и ровно четверть всех задач не решили оба.
 - (a) Докажите, что количество школьников не превосходило $2^k 1$.
 - **(b)** Постройте пример описанной ситуации с $2^k 1$ школьником.
- **4.** *Расстояние* между двумя точками **x** и **y** пространства \mathbb{R}^n определим как значение выражения $\sqrt{(\mathbf{x} \mathbf{y}, \mathbf{x} \mathbf{y})}$. Докажите, что в пространстве \mathbb{R}^n нельзя расположить n+2 различные точки так, чтобы попарные расстояния между ними были равны.
- **5.** В КИМах ЕГО (Единой Государственной Олимпиады) n тестовых вопросов, на каждый из которых можно ответить либо правильно, либо неправильно. В 2020 году в ЕГО приняли участие k человек. Результаты участников оказались такими, что проверочная комиссия может так приписать положительные веса тестовым вопросам, чтобы участники по первичным балам расположились в любом наперёд проплаченном порядке. Докажите, что $n \geqslant k$.
- **6.** Вася загадал двузначное число k. Петя за один вопрос может назвать произвольное натуральное число a и узнать сумму цифр числа ka. За какое наименьшее число вопросов Петя может угадать число k?