[2020-2021] группа: 11 26 октября 2020 г.

Производящие функции

Производящей функцией последовательности $\{a_n\}$ называется формальный степенной ряд:

$$F(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

Иногда степенной ряд сходится при всех x, лежащих в некоторой окрестности $(x-\delta,x+\delta)$ точки x=0. В этом случае производящей функцией также называют саму числовую функцию $f:(x-\delta,x+\delta)\to\mathbb{R},$ $f(x):=\sum a_k x^k$. В задачах данного листочка можно без доказательства пользоваться тем, что операции на рядах (сложение, умножение, почленное дифференцирование) соответствуют одноимённым операциям на числовых функциях.

- **1.** Найдите в замкнутом виде (т. е. без многоточий и знаков суммирования) производящую функцию последовательности $\{a_n\}$, если при всех $n \ge 0$ последовательность a_n задана формулой: (a) $a_n = C_m^n$; (b) $a_n = n$; (c) $a_n = n^2$; (d) $a_n = 1/n$.
- **2.** Напишите (в незамкнутом виде, в ответе можно использовать бесконечные произведения) производящие функции следующих последовательностей:
 - **(a)** a_k число способов разбить число k на различные натуральные слагаемые без учета порядка;
 - **(b)** b_k количество способов разбить число k на натуральные слагаемые с учетом порядка;
 - **(c)** c_k количество способов разбить число k на натуральные слагаемые без учета порядка;
 - **(d)** d_k количество способов разбить число k на нечетные натуральные слагаемые без учета порядка.
 - **(e)** Докажите, что $a_k = d_k$.
- **3.** На доске в клетке (0,0) стоит шахматный король, который умеет ходить только в трёх направлениях: вверх, вправо и вправо-вверх. Пусть $a_{(m,n)}$ $(b_{(m,n)})$ количество траекторий короля, заканчивающихся в (m,n), имеющих чётное (соответственно нечётное) число ходов вправо-вверх.

Для последовательности $c_{m,n}$ с двумя индексами производящая функция зависит от двух переменных и определяется так: $F(x,y) = \sum c_{m,n} x^m y^n$.

- **(a)** Найдите производящую функцию F(x, y) последовательности $a_{(m,n)} + b_{(m,n)}$.
- **(b)** Вычислите явно $a_{(m,n)} b_{(m,n)}$.
- **4.** Найдите количество подмножеств множества $\{1, 2, ..., 2000\}$, сумма элементов которых делится на **(a)** 4; **(b)** 3.
- 5. Погода в мае месяце бывает двух типов: хорошая и не очень. Учёные установили две закономерности: 1) 1 мая погода всегда не очень; 2) для $2 \leqslant k \leqslant 31$ погода k-го мая следующего года не очень тогда и только когда, когда в текущем году погода k и k-1 мая отличалась. В каком году впервые погода в течение всего мая будет в точности такой же, как в 2007?