[2020-2021] группа: 11 15 октября 2020 г.

Задачи по геометрии

1. На сторонах BC и AD вписанного четырехугольника ABCD взяли такие точки X и Y, что AX перпендикулярно биссектрисе угла CBD, а BY перпендикулярно биссектрисе угла CAD. Докажите, что $XY \parallel CD$.

- **2.** Обозначим за O центр описанной окружности треугольника ABC. Прямая AO пересекается со средней линией A_0C_0 в точке P. Докажите, что угол C_0PA равен углу A_0PF , где AF высота треугольника BC.
- 3. Четырехугольник ABCD вписан в окружность ω . Диагонали этого четырехугольника пересекаются в точке M, причем $\angle AMB = 60^\circ$. Точки K и L расположены вне ABCD так, что треугольники AKD и BLC равносторонние. Отрезок KL пересекает ω в точках P и Q. Докажите, что KP = QL.
- **4.** Вписанная окружность треугольника ABC касается сторон BC, CA и AB в точках A_1, B_1 и C_1 соответственно. Обозначим через P повторное пересечение AA_1 и вписанной окружности. Докажите, что прямая B_1P проходит через середину AF тогда и только тогда, когда AC = BC.
- 5. Биссектриса ℓ угла A треугольника ABC пересекает BC в точке D. Прямая d проходит через D перпендикулярно ℓ . Окружность ω проходит через точки B и C, причем ее центр лежит на ℓ . G произвольная точка на окружности ω . Прямая GA пересекает d в точке R. Докажите, что (DGR) касается ω .
- **6.** В треугольника ABC ответили середины M и N сторон AB и AC и точку пересечения медиан G. Касательные в точках M и N к окружности (AMN) пересекают BC в точках R и S соответственно. Точка X на стороне BC такова, что $\angle CAG = \angle BAX$. Докажите, что прямая GX является радикальной прямой окружностей (BMS) и (CNR).
- 7. Обозначим через A_1 , B_1 , C_1 основания высот треугольника ABC, проведенные через вершины A, B, C соответственно. Точка O центр описанной окружности треугольника ABC. Окружности (ABC) и AOA_1 повторно пересекаются в точке $P \neq A$. Прямые PB_1 и PC_1 повторно пересекают (ABC) в точках X и Y. Докажите, что $XY \parallel BC$.