[2019-2020] группа: 7 класс 08 февраля 2020 г.

Ряды Фарея

Рассмотрим последовательность всех правильных дробей со знаменателями, не превосходящими n, выписанных в порядке возрастания. Для удобства добавим также дробь $\frac{0}{1}$ в начало ряда и $\frac{1}{1}$ в конец. Полученный ряд называется *рядом Фарея по* $p \mathfrak{s} \partial \kappa a$ \tilde{n} . Обозначим ряд Фарея порядка n через Φ_n .

$$\begin{split} &\Phi_1 = \{\frac{0}{1}, \frac{1}{1}\} \\ &\Phi_2 = \{\frac{0}{1}, \frac{1}{2}, \frac{1}{1}\} \\ &\Phi_3 = \{\frac{0}{1}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{1}{1}\} \\ &\Phi_4 = \{\frac{0}{1}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{1}{1}\} \\ &\Phi_5 = \{\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}\} \end{split}$$

 $Me\partial uaнmoй$ двух дробей $\frac{a}{b}$ и $\frac{c}{d}$ назовем дробь $\frac{a+c}{b+d}$.

Для доказательства свойств рядов Фарея построим вспомогательную последовательность рядов Φ'_n . $\Phi'_1 = \{\frac{0}{1}, \frac{1}{1}\}$, а Φ'_n получается из Φ'_{n-1} следующим образом: мы ищем все пары соседних в Φ'_{n-1} дробей с суммой знаменателей n, и вставляем их медианты в соответствующие промежутки.

Нетрудно убедиться, что первые несколько Φ'_n совпадают с Φ_n . (Убедитесь в этом!) Наша цель: доказать, что $\Phi_n = \Phi'_n$.

- (a) Докажите, что дроби в Φ'_n идут в порядке возрастания.

 - (b) Пусть дроби $\frac{a}{b}$ и $\frac{c}{d}$ соседние в Φ'_n . Тогда |ad-bc|=1. (c) Пусть дроби $\frac{a}{b}$ и $\frac{c}{d}$ соседние в Φ'_n . Тогда их медианта дробь с наименьшим знаменателем среди всех дробей, лежащих между ними.
 - (d) Докажите, что ряды Φ_n и Φ'_n совпадают.
- Пусть $\frac{a}{b}$ и $\frac{c}{d}$ такие правильные дроби, что |ad-bc|=1. Докажите, что тогда **2**. найдется такое n, что $\frac{a}{b}$ и $\frac{c}{d}$ — соседние в Φ_n .
- 3. Пусть α — иррациональное число. Докажите, что
 - (a) для любого q найдется такое p, что $|\alpha \frac{p}{q}| < \frac{1}{2q}$;
 - (b) для любого n найдется такая дробь $\frac{p}{q}$, что $|\alpha \frac{p}{q}| < \frac{1}{nq}$ и $0 < q \leqslant n$.
- (a) Докажите, что площадь треугольника с вершинами (0,0), (a,b), (c,d) рав-**4.** на $\frac{|ad-bc|}{2}$. (a,b,c,d>0.)
 - (b) Кузнечики могут находиться только в целых точках 1-ого квадранта плоскости. Изначально 4 кузнечика находятся в вершинах параллелограмма площади 1, причем один из них находится в начале координат. За ход один из них может перепрыгнуть на другое место, но так, чтобы кузнечики все еще

находились в вершинах некоторого параллелограмма. Докажите, что такими операциями они могут перепрыгнуть в вершины (0,0),(0,1),(1,0),(1,1).