26 октября 2019 г.

[2019–2020 г.]

Сравнения.

Определение. Разделить целое число a на натуральное число b — значит найти такие целые числа q и r, что a = bq + r. При этом требуется выполнение неравенства $0 \leqslant r < b$. Числа q и r называются неполным частным и остатком при делении a на b.

Определение 1. Целые числа a и b сравнимы по модулю натурального числа n, если они дают одинаковые остатки при делении на n.

Определение 2. Целые числа a и b сравнимы по модулю натурального числа n, если их разность делится на n.

Свойства сравнений:

- · Если $a \equiv b \mod n$, то $a + c \equiv b + c \mod n$.
- · Если $a \equiv b \mod n$, то $ac \equiv bc \mod n$.
- \cdot Если $a \equiv b \mod n$, а $b \equiv c \mod n$, то $a \equiv c \mod n$.
- · Если $a \equiv b \mod n$, а $c \equiv d \mod n$, то $a + c \equiv b + d \mod n$.
- \cdot Если $a \equiv b \mod n$, а $c \equiv d \mod n$, то $ac \equiv bd \mod n$.
- · Если $a \equiv b \mod n$, то $a^k \equiv b^k \mod n$.
 - 1. Проверьте эквивалентность определений 1 и 2.
- Найдите остаток от деления:
 - (a) $1001 \cdot 1002 \cdot 1003 + 2001 \cdot 2001 \cdot 2002 \cdot 2003 \cdot 2004$ Ha 1000;
 - (b) 2015 · 2016 · 2017 · 2018 · 2019 на 11;
 - (c) $2017 \cdot 2016 \cdot 2015 + 2019 \cdot 2020 \cdot 2021$ на 2018;
 - (d) $1 \cdot 3 \cdot 5 \cdot \dots \cdot 101 + 2 \cdot 4 \cdot 6 \cdot \dots \cdot 102$ на 103.
- 3. Найдите остаток от деления:
- (a) 8^{2019} на 7; (b) 6^{2019} на 7; (c) 3^{2019} на 7.
- Найдите остаток от деления:
 - (a) $9^{2019} + 13^{2019}$ на 11;
 - (b) $7^{2012} + 9^{2015}$ Ha 10;
 - (c) $9^{2018} + 13^{2018}$ на 11.
- **5.** Докажите, что $1^{45} + 2^{45} + ... + 38^{45}$ делится на 13.
- Докажите, что число $5^{2019} + 18$ составное. 6.
- Пусть $3x + 7y \equiv 1 \pmod{11}$. 7.
 - (a) Докажите, что $3x + 40y \equiv 1 \pmod{11}$;

- **(b)** Найдите остаток от деления 14x 15y на 11;
- (c) Найдите остаток от деления 6x + 3y на 11.