группа: 9-1

4 апреля 2020 г.

Тригонометрическая запись комплексного числа

All this sounds pretty damn complex.

Snoop Dogg

Определение. Каждое комплексное число можно однозначно представить в виде $r(\cos\varphi+i\sin\varphi)$, причем r определяется единственным образом, а φ — с точностью до кратного 2π (если число не равно нулю). Число r называется модулем (и обозначается |z|), φ — аргументом комплексного числа, а сама форма называется тригонометрической записью комплексного числа.

- **1.** Представьте в тригонометрической форме числа (**a**) 2; (**b**) 1+i; (**c**) $1-\sqrt{3}i$.
- **2.** (а) Докажите, что $|zt|=|z|\cdot |t|$ для любых $z,t\in\mathbb{C}.$
 - (b) Докажите, что если два натуральных числа представляются в виде суммы двух квадратов, то их произведение также представляется в виде суммы двух квадратов.
- **3.** (а) Докажите, что при умножении комплексных чисел их модули умножаются друг на друга, а аргументы складываются.
 - (b) Докажите, что при делении комплексных чисел их модули делятся друг на друга, а аргументы складываются вычитаются.
 - (с) (Формула Муавра) Докажите, что

$$(r(\cos\varphi + i\sin\varphi))^n = r^n(\cos n\varphi + i\sin n\varphi).$$

- 4. Пользуясь формулой Муавра, выразите $\sin 7\varphi$ через $\sin \varphi$ и $\cos \varphi$.
- **5.** Вычислите

(a)
$$\sqrt{1+i}$$
; (b) $(1+\sqrt{3}i)^{2020}$; (c) $1+(1+i)+(1+i)^2+\ldots+(1+i)^{444}$.

6. (а) Найдите все вещественные корни уравнения

$$(x+i)^{2020} + (x-i)^{2020} = 0.$$

- (b) Найдите все его комплексные корни.
- 7. Упростите выражение:

$$\cos \alpha + \cos 2\alpha + \ldots + \cos n\alpha$$
.

В листике суммарно 15 задач (включая пункты). Количество полученных плюсиков по этому листику конвертируются в оценку по алгебре по следующему принципу.

3 - 9 плюсиков;

4 - 11 плюсиков;

5 - 13 плюсиков.

Задачи принимаются до 9 апреля.