группа: 9-1

15 февраля 2020 г.

Комплексные числа

Ко́мплексный обед, а числа — компле́ксные!

Суровая правда жизни

Определение. Комплексным числом называется формальная запись вида a+bi, где символ i удовлетворяет условию $i^2=-1,\ a,b\in\mathbb{R}$. Действия над комплексными числами осуществляются так же, как и над вещественными, с учетом последнего условия. Множество всех комплексных чисел обозначается \mathbb{C} . Числом 0 назовем выражение 0+0i.

- **1.** Пусть $x, y \in \mathbb{C}$. Докажите, что
 - (a) $x+y, x-y, xy \in \mathbb{C}$;
 - (b) если $y \neq 0$, то $\frac{x}{y} \in \mathbb{C}$.
- **2.** Упростите выражение: $\frac{(1+3i)(1-4i)+4+i}{2+i}$.
- 3. Решите уравнение
 - (a) $x^2 + 4 = 0$;
 - (b) $x^2 (2i+2)x + (2i-1) = 0;$
 - (c) $x^3 1 = 0$;
 - (d) $x^6 1 = 0$;

в комплексных числах.

Определение. Числа a+bi и a-bi называются сопряженными. Сопряженное к числу z обозначается \overline{z} .

- 4. Проверьте свойства сопряжения: $\overline{z}+\overline{t}=\overline{z+t};$ $\overline{zt}=\overline{z}\overline{t};$ $\overline{\overline{z}}=z.$
- **5.** (а) Пусть x корень квадратного трехчлена с рациональными коэффициентами. Докажите, что \overline{x} также является корнем этого уравнения.
 - (b) Пусть f(x) многочлен с действительными коэффициентами. Докажите, что если f(x)=0 , то $f(\overline{x})=0$.

Определение. Модуль комплексного числа a + bi равен $\sqrt{a^2 + b^2}$.

6. Докажите, что $z \cdot \overline{z} = |z|^2$.

Определение. Комплексная плоскость — это геометрическое представление множества комплексных чисел $\mathbb C$. Точка плоскости, имеющая координаты (x,y), изображает комплексное число z=x+iy.

- 7. (а) Изобразите на комплексной плоскости множество точек |z|=1.
 - (b) Найдите $\min |3 + 2i z|$ при $|z| \leqslant 1$.

Определение. Если комплексное число z имеет вид x+iy, где $x,y\in\mathbb{R}$, то число x называется вещественной (или действительной) частью комплексного числа z и обозначается $\operatorname{Re} z$, а число y называется мнимой частью комплексного числа z и обозначается $\operatorname{Im} z$.

8. Изобразите на комплексной плоскости множество точек, удовлетворяющее условию (**a**) $\text{Im } z \geqslant \text{Re } z;$

- (b) Im z + Re z = 444;
- (c) $\max(|\operatorname{Im} z|, |\operatorname{Re} z|) \leq 1$.
- 9. Неравенство треугольника. Докажите, что

$$|z_1| + |z_2| \geqslant |z_1 + z_2|$$
.

- 10. Про три комплексных числа известно, что $|z_1|=|z_2|=|z_3|\neq 0$ и $|z_1+z_2+z_3|=0$. Докажите, что точки z_1,z_2,z_3 образуют равносторонний треугольник на комплексной плоскости.
- **11.** Про комплексные числа x,y,z известно, что |x|=|y|=|z|=1. Какие значения может принимать выражение $\left|\frac{x+y+z}{xy+yz+xz}\right|$?

Основная теорема алгебры. Любой многочлен (от одной переменной) ненулевой степени с комплексными коэффициентами имеет, по крайней мере, один комплексный корень.

Следствие из основной теоремы алгебры. Любой многочлен степени n с комплексными коэффициентами имеет в нём ровно n комплексных корней, с учётом их кратности.

12. Докажите, что для любого многочлена P(x) с вещественными коэффициентами существует набор многочленов с вещественными коэффициентами $Q_i(x)$, $\deg Q_i(x) \leqslant 2$ такой, что $P(x) = Q_1(x)Q_2(x) \cdot \ldots \cdot Q_n(x)$.

В листике суммарно 20 задач (включая пункты).

Количество полученных плюсиков по этому листику конвертируются в оценку по алгебре по следующему принципу.

3 - 14 плюсиков;

4 - 16 плюсиков;

5 - 18 плюсиков.

Задачи принимаются до 29 февраля.