Ортоцентр-4. Добавка. Для тех, кто любит посложнее

- 1. Точка P симметрична точке B относительно прямой A_1C_1 . Докажите, что точки H,O,B_1 и P лежат на одной окружности.
- 2. Прямая, проходящая через центр описанной окружности и ортоцентр треугольника ABC (прямая Эйлера), пересекает стороны AC и BC в точках P и Q. Известно, что CP = CQ. Локажите, что $\angle ACB = 60^{\circ}$.
- 3. Прямые B_1C_1 и BC пересекаются в точке P. Докажите, что а) $PA\bot HA_0$ б) $HP\bot AA_0$.
- Пусть H₁ симметрична точке H относительно стороны BC, а прямые B₁C₁ и BC пересекаются в точке P. Докажите, что точки A, P, H₁ и середина стороны BC лежат на одной окружности.
- 5. Через вершину A провели прямую l_a , параллельную HA_0 . Аналогично определены прямые l_b и l_c . Докажите, что прямые l_a, l_b, l_c пересекаются в одной точке.

Ортоцентр-4. Добавка. Для тех, кто любит посложнее

- 1. Точка P симметрична точке B относительно прямой A_1C_1 . Докажите, что точки H,O,B_1 и P лежат на одной окружности.
- 2. Прямая, проходящая через центр описанной окружности и ортоцентр треугольника ABC (прямая Эйлера), пересекает стороны AC и BC в точках P и Q. Известно, что CP = CQ. Локажите, что $∠ACB = 60^{\circ}$.
- 3. Прямые B_1C_1 и BC пересекаются в точке P. Докажите, что а) $PA\bot HA_0$ б) $HP\bot AA_0$.
- Пусть H₁ симметрична точке H относительно стороны BC, а прямые B₁C₁ и BC пересекаются в точке P. Докажите, что точки A, P, H₁ и середина стороны BC лежат на одной окружности.
- 5. Через вершину A провели прямую l_a , параллельную HA_0 . Аналогично определены прямые l_b и l_c . Докажите, что прямые l_a, l_b, l_c пересекаются в одной точке.

Ортоцентр-4. Добавка. Для тех, кто любит посложнее

- 1. Точка P симметрична точке B относительно прямой A_1C_1 . Докажите, что точки H,O,B_1 и P лежат на одной окружности.
- 2. Прямая, проходящая через центр описанной окружности и ортоцентр треугольника ABC (прямая Эйлера), пересекает стороны AC и BC в точках P и Q. Известно, что CP = CQ. Докажите, что $\angle ACB = 60^{\circ}$.
- 3. Прямые B_1C_1 и BC пересекаются в точке P. Докажите, что а) $PA\bot HA_0$ 6) $HP\bot AA_0$.
- Пусть H₁ симметрична точке H относительно стороны BC, а прямые B₁C₁ и BC пересекаются в точке P. Докажите, что точки A, P, H₁ и середина стороны BC лежат на одной окружности.
- 5. Через вершину A провели прямую l_a , параллельную HA_0 . Аналогично определены прямые l_b и l_c . Докажите, что прямые l_a, l_b, l_c пересекаются в одной точке.

Ортоцентр-4. Добавка. Для тех, кто любит посложнее

- 1. Точка P симметрична точке B относительно прямой A_1C_1 . Докажите, что точки H, O, B_1 и P лежат на одной окружности.
- 2. Прямая, проходящая через центр описанной окружности и ортоцентр треугольника ABC (прямая Эйлера), пересекает стороны AC и BC в точках P и Q. Известно, что CP = CQ. Докажите, что $∠ACB = 60^{\circ}$.
- 3. Прямые B_1C_1 и BC пересекаются в точке P. Докажите, что а) $PA\bot HA_0$ б) $HP\bot AA_0$.
- 4. Пусть H_1 симметрична точке H относительно стороны BC, а прямые B_1C_1 и BC пересекаются в точке P. Докажите, что точки A, P, H_1 и середина стороны BC лежат на одной окружности.
- 5. Через вершину A провели прямую l_a , параллельную HA_0 . Аналогично определены прямые l_b и l_c . Докажите, что прямые l_a , l_b , l_c пересекаются в одной точке.

Ортоцентр-4. Добавка. Для тех, кто любит посложнее

- 1. Точка P симметрична точке B относительно прямой A_1C_1 . Докажите, что точки H,O,B_1 и P лежат на одной окружности.
- 2. Прямая, проходящая через центр описанной окружности и ортоцентр треугольника ABC (прямая Эйлера), пересекает стороны AC и BC в точках P и Q. Известно, что CP = CQ. Докажите, что $∠ACB = 60^{\circ}$.
- 3. Прямые B_1C_1 и BC пересекаются в точке P. Докажите, что а) $PA\bot HA_0$ б) $HP\bot AA_0$.
- Пусть H₁ симметрична точке H относительно стороны BC, а прямые B₁C₁ и BC пересекаются в точке P. Докажите, что точки A, P, H₁ и середина стороны BC лежат на одной окружности.
- 5. Через вершину A провели прямую l_a , параллельную HA_0 . Аналогично определены прямые l_b и l_c . Докажите, что прямые l_a, l_b, l_c пересекаются в одной точке.

Ортоцентр-4. Добавка. Для тех, кто любит посложнее

- 1. Точка P симметрична точке B относительно прямой A_1C_1 . Докажите, что точки H,O,B_1 и P лежат на одной окружности.
- 2. Прямая, проходящая через центр описанной окружности и ортоцентр треугольника ABC (прямая Эйлера), пересекает стороны AC и BC в точках P и Q. Известно, что CP = CQ. Докажите, что $\angle ACB = 60^{\circ}$.
- 3. Прямые B_1C_1 и BC пересекаются в точке P. Докажите, что а) $PA\bot HA_0$ б) $HP\bot AA_0$.
- 4. Пусть H_1 симметрична точке H относительно стороны BC, а прямые B_1C_1 и BC пересекаются в точке P. Докажите, что точки A, P, H_1 и середина стороны BC лежат на одной окружности.
- 5. Через вершину A провели прямую l_a , параллельную HA_0 . Аналогично определены прямые l_b и l_c . Докажите, что прямые l_a, l_b, l_c пересекаются в одной точке.