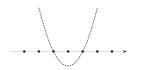
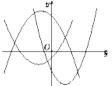

Квадратный трехчлен.


- 1. Квадратный трехчлен ах²+bx+с имеет корни. Верно ли, что трехчлен a) $a^3x^2 + b^3x + c^3$: б) $a^4x^2 + b^4x + c^4$ имеет корни?
- 2. Верно ли, что если b > a+c > 0, то квадратное уравнение ax^2+bx+c = 0 имеет два корня?
- 3. На рисунке изображены графики трёх квадратных трёчленов. Можно ли подобрать такие числа а, b и с, чтобы это были графики трёхчленов ax^2+bx+c , bx^2+cx+a и cx^2+ax+b ?

- 4. а) Числа а и b таковы, что графики y = ax b и $y = x^2 + ax + b$ ограничивают конечную фигуру ненулевой площади. Докажите, что внутри этой фигуры лежит начало координат.
 - б) Рассматриваются квадратичные функции у=x²+px+q, для которых p+q=2018. Покажите, что параболы, являющиеся графиками этих функций, пересекаются в одной точке.
- 5. Когда к квадратному трёхчлену f(x) прибавили $3x^2$, его наименьшее значение увеличилось на 9, а когда из него вычли x^2 , его наименьшее значение уменьшилось на 9. А как изменится наименьшее знчение f(x), если к нему прибавить x^2 ?
- 6. При каких значениях параметра b, $(b \neq 3)$ объединение парабол $y = x^2$ и $y = (b-3)x^2 + bx + 2b - 4$ имеет ось или центр симметрии?
- 7. Пусть P(x) квадратный трехчлен. Какое наибольшее количество членов, равных сумме двух предыдущих, может быть в последовательности P(1),P(2),P(3),...?
- 8. Известно, что модули корней каждого из двух квадратных трёхчленов $x^2 + ax + b$ и $x^2 + cx + d$ меньше десяти. Может ли трёхчлен $x^2 + \frac{a+c}{2}x + \frac{b+d}{2}$ иметь корень, модуль которого не меньше десяти?
- 9. а)У квадратного уравнения $x^2 + px + q = 0$ коэффициенты p и q увеличили на единицу. Эту операцию повторили девять раз. Могло ли оказаться, что у каждого из десяти полученных уравнений корни – целые числа? б)На доске было записано уравнение $x^2 + 10x + 20 = 0$. К доске поочерёдно подходили школьники, стирали либо второй коэффициент, либо свободный член и заменяли его на число, отличающееся ровно на 1. В результате оказалось записано уравнение $x^2 + 20x + 10 = 0$. Докажите, что в какой-то момент на доске было записано уравнение с целыми корнями.
- 10. На доске написан многочлен $x^2 + x + 2018$. Вася и Петя ходят по очереди, начинает Петя. Петя каждым ходом должен увеличить или уменьшить коэффициент при х на 1, а Вася каждым ходом должен увеличить или уменьшить свободный член на 1. Петя выиграет, если в какой-то момент у многочлена будет целый корень. Докажите, что Вася не сможет помешать ему выиграть.

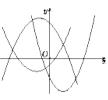

Домашнее задание

11. На рисунке изображен график приведенного квадратного трехчлена (ось ординат стерлась, расстояние между соседними отмеченными точками равно 1). Чему равен дискриминант этого трехчлена?

Квадратный трехчлен.

- 1. Квадратный трехчлен ах²+bx+с имеет корни. Верно ли, что трехчлен a) $a^3x^2 + b^3x + c^3$: 6) $a^4x^2 + b^4x + c^4$ имеет корни?
- 2. Верно ли, что если b > a+c > 0, то квадратное уравнение $ax^2 + bx + c = 0$ имеет два корня?
- 3. На рисунке изображены графики трёх квадратных трёчленов. Можно ли подобрать такие числа а, b и с, чтобы это были графики трёхчленов ax^2+bx+c , bx^2+cx+a и cx^2+ax+b ?

- 4. а) Числа а и b таковы, что графики y = ax b и $y = x^2 + ax + b$ ограничивают конечную фигуру ненулевой площади. Докажите, что внутри этой фигуры лежит начало координат.
 - б) Рассматриваются квадратичные функции у=x²+px+q, для которых p+q=2018. Покажите, что параболы, являющиеся графиками этих функций, пересекаются в одной точке.
- 5. Когда к квадратному трёхчлену f(x) прибавили $3x^2$, его наименьшее значение увеличилось на 9, а когда из него вычли х², его наименьшее значение уменьшилось на 9. А как изменится наименьшее знчение f(x), если к нему прибавить x^2 ?
- 6. При каких значениях параметра b, $(b \ne 3)$ объединение парабол $y = x^2$ и $y = (b-3)x^2 + bx + 2b - 4$ имеет ось или центр симметрии?
- 7. Пусть P(x) квадратный трехчлен. Какое наибольшее количество членов, равных сумме двух предыдущих, может быть в последовательности P(1),P(2),P(3),...?
- 8. Известно, что модули корней каждого из двух квадратных трёхчленов $x^2 + ax + b$ и $x^2 + cx + d$ меньше десяти. Может ли трёхчлен $x^2 + \frac{a+c}{2}x + \frac{b+d}{2}$ иметь


корень, модуль которого не меньше десяти?

- 9. а)У квадратного уравнения $x^2 + px + q = 0$ коэффициенты p и q увеличили на единицу. Эту операцию повторили девять раз. Могло ли оказаться, что у каждого из десяти полученных уравнений корни – целые числа? б)На доске было записано уравнение $x^2 + 10x + 20 = 0$. К доске поочерёдно подходили школьники, стирали либо второй коэффициент, либо свободный член и заменяли его на число, отличающееся ровно на 1. В результате оказалось записано уравнение $x^2+20x+10=0$. Докажите, что в какой-то момент на доске было записано
- 10. На доске написан многочлен $x^2 + x + 2018$. Вася и Петя ходят по очереди, начинает Петя. Петя каждым ходом должен увеличить или уменьшить коэффициент при х на 1, а Вася каждым ходом должен увеличить или уменьшить свободный член на 1. Петя выиграет, если в какой-то момент у многочлена будет целый корень. Докажите, что Вася не сможет помешать ему выиграть.

Домашнее задание

уравнение с целыми корнями.

11. На рисунке изображен график приведенного квадратного трехчлена (ось ординат стерлась, расстояние между соседними отмеченными точками равно 1). Чему равен дискриминант этого трехчлена?

