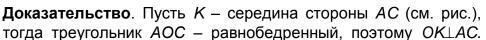
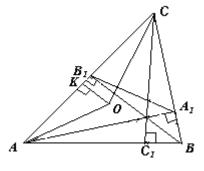
Угол между радиусом описанной окружности и стороной треугольника

Сформулируем и докажем **основной факт**, выражающий связь между двумя углами: углом между радиусом описанной окружности и стороной треугольника и углом треугольника. Знание этого факта помогает решить много геометрических задач.

Пусть О — центр окружности, описанной около остроугольного треугольника ABC. Тогда \angle OCA = 90° — \angle ABC.





Значит, $\angle KOC = \frac{1}{2} \angle AOC = \angle ABC$. Следовательно, $\angle OCA = 90^{\circ} - \angle KOC = 90^{\circ} - \angle ABC$.

Понятно, что для других радиусов все аналогично.

Следствия. Пусть AA_1 , BB_1 и CC_1 – высоты треугольника (дополнить рис.). Тогда: 1) $\angle OCA = \angle C_1CB$; 2) прямые CO и CC_1 симметричны относительно биссектрисы угла ACB; 3) $OC\bot A_1B_1$, то есть, радиусы описанной окружности перпендикулярны сторонам ортотреугольника; 4) касательные к описанной окружности треугольника параллельны сторонам его ортотреугольника.

Доказательство. 1) $\angle C_1CB = 90^\circ - \angle ABC$; 2) разность равных углов; 3) $\angle A_1B_1C + \angle KCO = \angle ABC + 90^\circ - \angle KOC = 90^\circ$, значит, $OC \bot A_1B_1$; 4) касательная, проведенная к описанной окружности в точке C, перпендикулярна радиусу OC, а $OC \bot A_1B_1$, значит, она параллельна A_1B_1 .

Упражнения и задачи для самостоятельного решения

- **1.** Выведите аналогичный основной факт для случаев, когда угол *В* треугольника *АВС* прямой или тупой. Верны ли следствия для этих случаев?
- **2.** В треугольнике *ABC* проведена биссектриса *CL*, O центр окружности, описанной около *ABC*. На стороне *AC* отмечена точка *D* так, что DC = BC. Докажите, что $CO \perp DL$.
- **3.** Четырехугольник *ABCD* вписан в окружность, центр *O* которой лежит внутри него. Докажите, что если $\angle BAO = \angle DAC$, то диагонали четырехугольника перпендикулярны.
- **4.** Биссектриса угла A равнобедренного треугольника ABC (AB = BC) пересекает описанную окружность в точке W, I центр вписанной окружности треугольника ABC. Докажите, что центр описанной окружности треугольника IBW лежит на стороне BC.
- **5.** H ортоцентр остроугольного треугольника ABC, O_A и $O_{\tilde{N}}$ центры окружностей, описанных около треугольников AHB и CHB соответственно. Докажите, что $O_AO_{\tilde{N}}=AC$.
- **6.** Дан треугольник *ABC*. Рассматриваются все такие пары точек *K* и *L* на стороне *AC*, что $\angle ABK = \angle CBL$. Докажите, что центры описанных окружностей всех треугольников *KBL* лежат на одной прямой.
- **7.** Произвольная прямая, проходящая через вершину B треугольника ABC, пересекает сторону AC в точке K, а описанную около ABC окружность в точке M. Докажите, что:
- а) центры O_A описанных окружностей всех таких треугольников AMK лежат на одной прямой; б) $O_AK\bot BC$. в) Пусть $O_{\tilde{N}}$ центр окружности, описаннîé около треугольника CMK. Докажите, что прямые AO_A и $\tilde{N}O_{\tilde{N}}$ пересекаются на высоте треугольника ABC.
- **8.** Из середины D стороны BC треугольника ABC опущены перпендикуляры DE и DF на стороны AB и AC соответственно. M середина отрезка EF. Докажите, что $DM \parallel AO$, где O центр окружности, описанной около треугольника ABC.
- **9.** Пусть I, I_a и I_c центры вписанной и двух вневписанных окружностей треугольника ABC, O центр описанной окружности треугольника II_aI_c . Докажите, что $OI\perp AC$.
 - **10.** Точка D вне остроугольного треугольника ABC такова, что $\angle ABC + \angle ABD = \angle ACB + \angle ACD = 180°$. Докажите, что центр описанной окружности треугольника ABC лежит на отрезке AD.