
On the Desargues’ Involution Theorem

MarkBcc168

September 8, 2017

As the title suggests, this article will deal with one powerful theorem in projective geometry,
Desargues’ Involution Theorem and its variants. As well as presenting some Olympiad problems
which can be solved with this theorem. Readers are expected to be familiar with projective
geometry, inversion and some basics of conics.

1 What is involution?

As you may have guessed, this theorem will be deal with involution. In general, involution is
any function f : A → A satisfying f(f(x)) = x for every x ∈ A. But let we restrict a bit more
by adding the following conditions.

Definition 1.1. Let P be the set of all points on a line or a conic. Then the function f : P → P
is called involution if and only if it satisfies two conditions.

(i) f preserves cross-ratio. Or for any points A,B,C,D ∈ P,

(A,B;C,D) = (f(A), f(B); f(C), f(D)).

(ii) f(f(A)) = A for every point A ∈ P.
Furthermore, we call a pair (A, f(A)) reciprocal pair.

We give some preliminary observations.

Theorem 1.2. Let P be the set of all points on a line or a conic. If the function f : P → P
preserves cross ratio and have two points A,A′ ∈ P satisfying f(A) = A′ and f(A′) = A then f
is an involution.

Proof. Let P ∈ P, Q = f(P ) and P ′ = f(Q). Then we have

(A,A′;P,Q) = (f(A), f(A′); f(P ), f(Q)) = (A′, A;Q,P ′) = (A,A′;P ′, Q)

which implies P ′ = P as desired.

Now we will classify involution on a line and involution on a conic. The classification of both
type of involutions is very different so we will split the discussion.

1.1 Involution on a line

Some readers may want to see the example of involutions on a line `. The most obvious ones are
identity function (trivial) and reflection across a fixed point on `. Thinking a bit more carefully,
isogonal-conjugating is an involution as well (it preserves cross-ratio because it’s a composition
on reflection and projection on to `). But in fact, even inversion is an involution.

Theorem 1.3. Let ` be a line. Then inversion around a fixed point on ` is an involution on `.
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Proof. Let A,B,C,D be points on line ` and A′, B′, C ′, D′ be their inverted image. It’s suffice
to show that

(A,B;C,D) = (A′, B′;C ′, D′)

Let O, p be the center and the power of this inversion. Using directed length, we find that

(A′, B′ : C ′, D′) =
(OA′ −OC ′)(OB′ −OD′)

(OB′ −OC ′)(OA′ −OD′)

=
(
p

OA
− p

OC
)(

p

OB
− p

OD
)

(
p

OB
− p

OC
)(

p

OA
− p

OD
)

=
(OA−OC)(OB −OD)

(OB −OC ′)(OA−OD)

= (A,B;C,D)

Furthermore, the converse of Theorem 2 holds true as well.

Theorem 1.4. Any involution on a line ` is an inversion of some nonzero (possibly negative)
power.

Proof. It is straightforward to verify this theorem algebraically. But we present a synthetic
proof by user TinaSprout in Art of Problem Solving.

Let the involution swapping P and a point at infinity on `, points X1 and X2, points Y1 and
Y2. Then we have

(P,∞;X1, Y1) = (P,∞;X2, Y2) =⇒ PX1

PY1
=
PX2

PY2

Hence PX1 · PX2 = PY1 · PY2 (lengths are directed), therefore this involution must be an
inversion centered at P .

1.2 Involution on a conic

Surprisingly, classification involution on a conic is very simple as the following theorem stated.

Theorem 1.5. Let C be a conic. Then for any involution f on C, there exists a fixed point P
such that f takes point A to the second intersection of PA and C .

Proof. Since the statement is purely projective, we can take any projective transformation which
sends C to a circle. Therefore without loss of generality, let C be a circle.

Let (A1, A2), (B1, B2), (C1, C2) be reciprocal pairs of the involution f . Invert around any
point P ∈ C take C to a line `. And (A1, A2), (B1, B2), (C1, C2) become reciprocal pairs of
an involution f ′ on a line `. We must show that circles �(PA1A2),�(PB1B2),�(PC1C2) are
coaxial.

By Theorem 3, there exists point K ∈ ` such that KA1 ·KA2 = KB1 ·KB2 = KC1 ·KC2

(lengths are directed). Therefore K lies on radical axis of three circles. But we already know
that point P 6= K lies on radical axis of three circles. Hence we are done.

We also would like to note that we can also project involution from line to conic. This can
be a possible way to prove concurrent chords.
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2 Desargues’ Involution Theorem

Now it may seems that involution is useless because it’s just an inversion. But Desargues
have shown that any five lines forms three reciprocal pairs of involution. Desargues’ Involution
Theorem states that.

2.1 The main theorem

Theorem 2.1 (Desargues’ Involution Theorem). Let ABCD be a quadrilateral. A line ` in-
tersect lines AB,CD,AD,BC,AC,BD at points X1, X2, Y1, Y2, Z1, Z2. A conic C pass through
points A,B,C,D intersects line ` at points W1,W2. Then pairs (W1,W2), (X1, X2), (Y1, Y2), (Z1, Z2)
are reciprocal pairs of some involution on `.

The proof of this theorem requires cross-ratio on a conic. Make sure the reader knows (or
convince yourself) that projecting from a line to a conics from a point at that conic preserves
cross-ratio.

Proof. [1] Recall that there exists projective transformation f which fix a line ` and send points
W1,W2, X1 to W2,W1, X2 respectively. By theorem 1, f is an involution hence (X1, X2) is a
reciprocal pair too. Now it suffices to prove that (Y1, Y2), (Z1, Z2) are reciprocal pair too. Note
that

(X1, Y1;W1,W2)
A
= (B,D;W1,W2)

C
= (Y2, X2;W1,W2) = (X2, Y2;W2,W1)

But we already know that f(X1) = X2, f(W1) = W2, f(W2) = W1. Therefore f(Y1) = Y2 and
hence (Y1, Y2) is a reciprocal pair of f . Similarly (Z1, Z2) is reciprocal pair of f too and we are
done.

The degenerate case of this theorem is true. Here we present the three points and two points
version of this theorem. Convince yourself that the following statements are true.

Theorem 2.2 (2 Points Desargues Involution). Let A,B be points on a conic C. A line `
intersects lines AB at X and intersects lines tangent to C at A,B at Y1, Y2. Line ` also intersects
C at W1,W2. Then pairs (W1,W2), (X,X), (Y1, Y2) are reciprocal pairs of some involution on
`.

Theorem 2.3 (3 Points Desargues Involution). Let ABC be a triangle inscribed in a conic C.
A line ` intersects lines AB,AC,BC at X1, X2, Y1 and intersects lines tangent to C at A at Y2.
Line ` also intersects C at W1,W2. Then pairs (W1,W2), (X1, X2), (Y1, Y2) are reciprocal pairs
of some involution on `.

2.2 Dual of Desargues’ Involuion Theorem

You should be familiar with pole-polar concept which turn colinearity into concurrency, tangent
into lying on a circle. This makes a purely projective theorem come in pairs (e.g. Pascal’s and
Brianchon’s, Newton’s and Brokard’s). Dersargues’ Involution Theorem also have it’s pair (or
dual).

Definition 2.4. Let P be a point on the plane. Let L be the set of all line containing P . Then
f : L → L is involution on a pencil of lines if and only if.

(i) For every PA,PB, PC, PD ∈ L, we have

(PA,PB;PC,PD) = (f(PA), f(PB); f(PC), f(PD))

(ii) f(f(`)) = ` for every ` ∈ L. Furthermore, we call a pair (`, f(`)) reciprocal pair.

Of course, if we have an involution on a pencil, we can project onto a line to get an involution
on a line.
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Theorem 2.5 (Dual of Desargues’ Involution Theorem). Let P,A,B,C,D be points on a plane
with AB ∩ CD = E,AD ∩ BC = F . Let a conic C tangent to lines AB,CD,AD,BC. Let
PX,PY are the tangent line from P to C. Then (PX,PY ), (PA,PC), (PB,PD), (PE,PF )
are reciprocal pairs of some involution on pencil of lines pass through P .

Proof. Take a pole-polar transformation with respect to C, this is equivalent to Desargues’
Involution Theorem.

Usually, this dual statement is more useful than the original one and it is usually stated as
just Desargues’ Involution Theorem. The three points and two points versions also true as we
are going to state them here.

Theorem 2.6 (Dual of 2 Points Desargues Involution). Let A,B be points on a conic C and
let P be a point on a plane. Lines tangent to C at A,B intersect at X. Lines pass through P
tangent to C at Y,Z. Then pairs (PY , PZ), (PX,PX), (PA,PB) are reciprocal pairs of some
involution on the pencil of lines pass through P .

Theorem 2.7 (Dual of 3 Points Desargues Involution). Let ABC be a triangle and P be a
point in a plane. A conic C which tangent to lines BC,AC,AB tangent to BC at D. Let P be
a point on a plane. Let lines through P which tangent to C tangent at X,Y respectively Then
(PX,PY ), (PA,PD), (PB,PC) are reciprocal pairs of some involution on pencil of lines pass
through P .

Note : Usually, we only use the special case where C is a circle.

3 Examples

First, let us nuke a fifth problem on USAMO with this theorem.

Example 3.1 (USAMO 2012 P5). Let P be a point in the plane of 4ABC, and γ a line passing
through P . Let A1, B1, C1 be the points where the reflections of lines PA,PB,PC with respect
to γ intersect lines BC,AC,AB respectively. Prove that A1, B1, C1 are collinear.

Proof. By reflection, there is an involution swapping (PA,PA1), (PB,PB1), (PC,PC1). Now
let C ′

1 = A1B1 ∩AB. By Desargues’ Involution theorem, this involution must swap (PC,PC ′
1).

Hence C1 = C ′
1 and we are done.

Let we present the use of involution on a conic. This problem is actually very straightforward
with involution but very difficult to solve in other way.

Example 3.2 ([2]). Let ABC and DEF be two triangles which share an incircle ω and cir-
cumcircle γ. Let L be the tangency point of EF on ω and define K similarly on BC. Select
N ≡ AL ∩ γ and M ≡ DK ∩ γ. Show that lines AM,EF,BC,ND are concurrent.

Proof. By Desargues’ Involution theorem, there exists an involution swapping (DA,DM), (DB,DC),
(DE,DF ). Projecting this involution to γ, we have an involution swapping (A,M), (B,C),
(E,F ). By theorem 3, lines AM,EF,BC are concurrent. Similarly EF,BC,ND are concurrent
and we are done.

We would like to close this article with the following extremely difficult problem from Taiwan
TST. No one has solved this during exam but it has very short and elegant solution with
Desargues’ Involution Theorem.

Example 3.3 (Taiwan TST3 2014 P3). Let M be any point on the circumcircle of ∆ABC.
Suppose the tangents from M to the incircle meet BC at two points X1 and X2. Prove that
the circumcircle of ∆MX1X2 intersects the circumcircle of ∆ABC again at the tangency point
of the A-mixtilinear incircle.
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Solution. Let �(I) denote the incircle of ∆ABC. Let �(I) touch BC at D and let T be the
tangency point of the A-mixtilinear incircle.

By Desargues’ Involution Theorem, there is an involution swapping (MX1,MX2), (MB,MC),
(MD,MA). Projecting onto the line BC and let AM ∩ BC = N , there exists an involution
swapping (D,N), (B,C), (X1, X2).

By Theorem 3, letK be the center of inversion and consider the circles�(ABMC), �(MDN)
�(MX1X2). We have KB · KC = KD · KN = KX1 · KX2 hence MK is the radical axis of
three circles. Therefore they are coaxial and must meet at other point.

Now it suffices to show that M,D,N, T are concyclic. To do that, extend TD to meet
�(ABC) at A1. It’s well known (by ∠BTD = ∠CTA) that AA1 ‖ BC. Hence we are done
because ∠ANB = ∠A1AM = ∠A1TM = ∠DTM .

4 Practice Problems

Desargues’ Involution theorem can be manipulated for many different situations. Sometimes it
trivializes problem but sometimes it makes only a tiny progress. Most of the given problems are
difficult geometry problem but it has different difficulty when knowing Desargues’ Involution
theorem. Have fun.

Problem 4.1 (China TST2 2017 P3). Let ABCD be a quadrilateral and let l be a line. Let
l intersect the lines AB,CD,BC,DA,AC,BD at points X,X ′, Y, Y ′, Z, Z ′ respectively. Given
that these six points on l are in the order X,Y, Z,X ′, Y ′, Z ′, show that the circles with diameter
XX ′, Y Y ′, ZZ ′ are coaxal.

Problem 4.2 (Serbia MO 2017 P6). Let k be the circumcircle of4ABC and let ka be A-excircle
. Let the two common tangents of k, ka cut BC in P,Q. Prove that ]PAB = ]CAQ.

Problem 4.3 (IMO shortlist 2005 G6). Let ABC be a triangle, and M the midpoint of its side
BC. Let γ be the incircle of triangle ABC. The median AM of triangle ABC intersects the
incircle γ at two points X and Y . Let the lines through X and Y , parallel to BC, intersect the
incircle γ again in two points X1 and Y1. Let the lines AX1 and AY1 intersect BC again at the
points P and Q. Prove that BP = CQ.

Problem 4.4 ([3]). Let ABC be a triangle with orthocenter H and circumcircle Ω centered at
O. Let MA,MB,MC be the midpoints of sides BC,CA,AB. Lines AMA, BMB, CMC intersect
Ω again at PA, PB, PC . Rays MAH,MBH,MCH intersect Ω at QA, QB, QC . Prove that lines
PAQA, PBQB, PCQC and OH are concurrent.

Problem 4.5 (IMO Shortlist 2012 G8). Let ABC be a triangle with circumcenter O and ` a
line. Denote by P the foot from O to `. The side-lines BC,CA,AB intersect ` at the points
X,Y, Z different from P . Prove that the circles �(AXP ), �(BY P ) and �(CZP ) are coaxial.

Problem 4.6 (China TST1 2017 P5). In the non-isosceles triangle ABC, MA,MB,MC is the
midpoint of side BC,CA,AB. The line (different from line BC) through MA that is tangent
to the incircle of triangle ∆ABC intersect line MBMC at X. Define Y,Z similarly. Prove that
points X,Y, Z are collinear.

Problem 4.7 (IMO Shortlist 2015 G7). Let ABCD be a convex quadrilateral, and let P , Q,
R, and S be points on the sides AB, BC, CD, and DA. Let the segments PR and QS meet at
O. Suppose that each of the quadrilaterals APOS, BQOP , CROQ, and DSOR has an incircle.
Prove that the lines AC, PQ, and RS are either concurrent or parallel to each other.

Problem 4.8 (IMO 2008 P6). Let ABCD be a convex quadrilateral with BA 6= BC. Denote
the incircles of triangles ABC and ADC by ω1 and ω2 respectively. Suppose that there exists a
circle ω tangent to rays BA,BC,AD,CD. Prove that the exsimilicenter of ω1 and ω2 lies on ω.

5



References

[1] Michael Woltermann. 63. Desargues’ Involution Theorem, 2010.

[2] https://artofproblemsolving.com/community/q2h1226573p6939973.

[3] https://artofproblemsolving.com/community/c6h623918p3734836.

6


