[2019—2020] группа: Геом-10 10 марта 2020 г.

Серия 18. Движение точек, скрытые коники и лемма Соллертинского

Для каждой точки T обозначим через (T) пучок прямых, проходящих через точку T.

Лемма Соллертинского. На плоскости даны точки X и Y. Предположим, что прямые $\ell_X(t) \in (X)$ и $\ell_Y(t) \in (Y)$ вращаются с сохранением двойных отношений вокруг точек X и Y соответственно $(t \in \mathbb{R}P)$. Тогда точка пересечения прямых $\ell_X(t)$ и $\ell_Y(t)$ движется с сохранением двойных отношений либо по некоторой конике, проходящей через точки X и Y, либо по прямой (прямая получается в случае, когда $\ell_X(t)$ и $\ell_Y(t)$ проезжают прямую XY одновременно).

Двойственная лемма. Предположим, что точки X_t и Y_t движутся по разным прямым ℓ_X и ℓ_Y соответственно с сохранением двойных отношений $(t \in \mathbb{R}P)$. Тогда прямая X_tY_t либо касается некоторой коники, вписанной в угол между прямыми ℓ_X и ℓ_Y , либо проходит через постоянную точку (постоянная точка возникает в случае, когда точки X_t и Y_t одновременно проезжают точку пересечения своих траекторий). При этом точка касания прямой X_tY_t и коники едет по этой конике с сохранением двойных отношений.

- 1. Докажите, что изогональный образ прямой, не проходящей через вершины треугольника— это коника, проходящая через вершины. Изогональным образом какой прямой будет описанная окружность треугольника?
- 2. На сторонах AB, AC остроугольного неравнобедренного треугольника ABC отмечены точки X и Y соответственно так, что четырёхугольник BXYC вписанный. Отрезки BY и CX пересекаются в точке R. Точка A' плоскости такова, что отрезок AA' диаметр окружности (ABC). Прямая A'R пересекает окружность (ABC) в точках A' и M. (a) Докажите, что прямые AM и XY пересекаются на прямой BC. (b) Докажите, что ось ортоцентров треугольников ABC и AXY проходит через точку R.
- 3. Окружность ϑ с центром в точке O касается сторон угла BAC в точках B и C. Прямая, параллельная прямой BC, проходит через точку O и пересекает прямые AB и AC в точках D и E соответственно. На отрезке BC отмечена произвольная точка X. Прямые DX и AC пересекаются в точке Y. Прямая, параллельная прямой AC, проходит через точку X и пересекает прямую AB в точке Z. Докажите, что прямая YZ касается окружности ϑ .
- 4. К двум непересекающимся окружностям ω_1 и ω_2 провели отрезки общих касательных: A_1A_2 (внешняя) и B_1B_2 (внутренняя) $(A_1, B_1 \in \omega_1, A_2, B_2 \in \omega_2)$. Докажите, что прямая, соединяющая точки пересечения пар прямых A_1A_2 , B_1B_2 и A_1B_2 , A_2B_1 , ортогональна линии центров ω_1 и ω_2 .
- **5.** На плоскости даны два треугольника ABC и A'B'C'. На плоскости нашлась такая точка S, что

$$AS \perp B'C'$$
, $BS \perp C'A'$, $CS \perp A'B'$, $A'S \perp BC$, $B'S \perp CA$, $C'S \perp AB$.

Докажите, что прямые AA', BB', CC' пересекаются в одной точке или параллельны. Иными словами, если два треугольника ортологичны и центры ортологии совпадают, то они перспективны.

- **6.** Диагонали вписанного четырёхугольника ABCD пересекаются в точке R. Обозначим через C_1 , D_1 , M середины отрезков RC, RD, CD соответственно. Прямые AD_1 и BC_1 пересекаются в точке X. Прямая XM пересекает прямые AC и BD в точках U и V. Докажите, что прямая RX касается окружности (RUV).
- 7. В остроугольном неравнобедренном треугольнике ABC отмечены изогонально сопряжённые точки P и Q. Точка W середина дуги BAC окружности (ABC). Прямые WP и WQ второй раз пересекают окружность (ABC) в точках X и Y соответственно. Через точки P и Q проведены прямые, параллельные прямой AW; этим прямые пересекают стороны AB, AC в точках P_B , P_C , Q_B , Q_C . Докажите, что точки X, Y, P_B , P_C , Q_B , Q_C лежат на одной окружности.