[2019–2020] группа: Геом-10 19 ноября 2019 г.

Серия 7. Проективные преобразования плоскости

Проективным преобразованием проективной плоскости Π , назовём преобразование, которое можно представить в виде композиции центральной проекции $f \colon \Pi \to \Pi'$ в пространстве на некоторую плоскость Π' и аффинного отображения $g \colon \Pi' \to \Pi$.

- **0.** (Теорема Паппа) Точки A_1 , B_1 , C_1 лежат на одной прямой; точки A_2 , B_2 , C_2 лежат на другой прямой. Докажите, что точки пересечения пар прямых A_1B_2 и A_2B_1 , B_1C_2 и B_2C_1 , C_1A_2 и C_2A_1 лежат на одной прямой.
- **1.** (Теорема Дезарга) Докажите, что прямые A_1A_2 , B_1B_2 , C_1C_2 пересекаются в одной точке тогда и только тогда, когда точки пересечения прямых A_1B_1 и A_2B_2 , B_1C_1 и B_2BC_2 , C_1A_1 и C_2A_2 лежат на одной прямой (считайте, что треугольники $A_1B_1C_1$ и $A_2B_2C_2$ невырожденные).
- **2.** (Теорема о трижды перспективных треугольниках) Два треугольника назовём перспективными, если прямые, соединяющие их соответственные вершины, пересекаются в одной точке. Известно, что треугольники ABC и A'B'C' перспективны и треугольники ABC и B'C'A' перспективны. Докажите, что треугольники ABC и C'A'B' тоже перспективны.
- **3.** На проективной плоскости даны две пронумерованные четвёрки точек общего положения. Докажите, что проективное преобразование, переводящее одну четвёрку в другую (a) существует; (b) единственно.
- **4.** На недорисованной картине изображена железная дорога, проложенная через равнину и уходящая за горизонт, а также две рядом лежащие шпалы, параллельные линии горизонта. Как с помощью линейки определить, где надорисовать третью шпалу?
- **5.** Докажите, что с помощью одной линейки невозможно разделить данный отрезок пополам.
- **6.** На сторонах AC, AB, BC, BC, BC, BC треугольника ABC отмечены точки B', C', A_A , A_P , A_B , A_C соответственно. Прямые BB', CC' пересекаются в точке P. Известно, что AA_A , PA_P , $B'A_B$, $C'A_C$ пересекаются в одной точке. Докажите, то AA_P , PA_A , $B'A_C$, $C'A_B$ также пересекаются в одной точке.
- 7. Точка M_0 лежит на стороне AB четырёхугольника ABCD. Точка M_1 проекция точки M_0 из точки D на прямую BC, точка M_2 проекция точки M_1 из точки A на прямую CD, точка M_3 проекция точки M_2 из точки B на прямую DA, точка M_4 проекция точки M_3 из точки C на прямую AB и т. д. Докажите, что $M_{12}=M_0$.
- **8.** Докажите, что любой выпуклый пятиугольник проективно эквивалентен пятиугольнику, образованному точками пересечения его диагоналей.