1. На доске записаны натуральные числа от 1 до 9. Тимофей и Игорь играют в игру. Они по очереди стирают одно число с доски и записывают его себе в тетрадь. Выигрывает тот, кто первым получит в своей тетради три числа с суммой 15 (если по прошествии девяти ходов этого не произошло, то объявляется ничья). Кто выигрывает при правильной игре, если первым ходит Тимофей?

Идея. Вспомнить, в каком объекте встречаются тройки цифр с суммой 15.

Решение. Рассмотрим магический квадрат 3×3 . Заметим, что в его строках, столбцах и диагоналях как раз записаны тройки чисел с суммой 15 (см. рис).

		2	7	6	\rightarrow	15
		9	5	1	\rightarrow	15
		4	3	8	\rightarrow	15
	/	\downarrow	\downarrow	\downarrow	\searrow	
15		15	15	15		15

Наоборот, прямой перебор показывает, что любая тройка чисел с суммой 15 представлена в строке, столбце или диагонали этого квадрата. Таким образом, описанная в условии игра полностью эквивалентна обычным "крестикам-ноликам" в квадрате 3×3 . Как известно, при правильной игре обеспечена ничья (первый должен поставить крестик в центр, затем второй ставит нолик в угол и т.д.)

2. Изначально на доске записаны натуральные числа m и n. Каждую минуту Денис записывает в тетрадку квадрат наименьшего из чисел на доске, после чего Артём ищет разность чисел на доске и записывает ее вместо наибольшего из них, пока в какой-то момент не выпишет 0. Чему равна сумма чисел у Дениса в тетради?

Идея. Рассмотреть прямоугольник $m \times n$ и понять, что с ним происходит на каждом шаге.

Решение 1. Пусть $m \ge n$. Можно считать, что на доске нарисован прямоугольник $m \times n$, от которого каждым ходом отрезают квадрат $n \times n$, записывая в тетрадь площадь этого квадрата. Площадь прямоугольника на доске является полуинвариантом, поэтому процесс завершится (а именно, при m = n) и прямоугольник будет стерт с доски. При этом сумма чисел в тетради равна его исходной площади — mn.

Решение 2. Докажем индукцией по m+n, что сумма чисел у Дениса в тетради равна mn. Ясно, что верна база индукции: если m+n=2, то m=n=1— в тетради будет выписано только число 1.

<u>Переход.</u> Если m=n, то процесс завершится на первом шаге и в тетради будет записано число m^2 . Пусть m>n. Отметим, что после первого шага в тетрадь будет выписано число n^2 , а на доске пара (m,n) заменится на (m-n,n) с меньшей суммой. Значит, для нее выполняется индукционное предположение, и сумма чисел в тетради равна $n^2+(m-n)n=mn$, что и требовалось.

3. Алфавит состоит из n букв, словом считается любая последовательность из k букв алфавита. Два слова назовем noxoнcumu, если они различаются ровно в одной букве. В какое наименьшее число цветов можно раскрасить все слова так, чтобы любые два похожих слова были разноцветными?

Идея. Рассмотреть буквы алфавита как остатки по модулю п.

Решение. Докажем, что наименьшее число цветов равно n. k-1

<u>Оценка</u>. Пусть a — буква алфавита. Тогда n различных слов вида $\overbrace{aa \dots a} *$ (где * — любая из букв алфавита) попарно похожи. Значит, требуется не менее n цветов.

<u>Пример.</u> Отождествим алфавит с множеством $\{0,1,\ldots,n-1\}$. Раскрасим все слова длины k в n цветов: слову $a_1a_2\ldots a_k$ присвоим цвет с номером $a_1+a_2+\ldots+a_k \mod n$. Отличающиеся одной буквой слова будут тогда раскрашены в разные цвета.

4. Математические кружки в Хамовниках посещали школьники 9, 10 и 11 классов, по n школьников в каждой параллели. После каждого занятия назначалась тройка добровольцев (по одному из каждого класса) для наведения порядка в кабинетах (убирали недопитый чай, невыброшенные стаканчики, мусор неизвестного происхождения; также они расставляли по местам стулья в кабинете и в коридоре). Известно, что никакая пара школьников не попадала в тройку добровольцев хотя бы дважды. Какое наибольшее количество занятий могло пройти?

Идея. Вновь использовать арифметику остатков для построения примера.

Решение. Оценка. Пар учеников, в которых один школьник — 9-классник, а другой — 10-классник, ровно $n \cdot n = n^2$. Значит, число проведенных занятий не могло превосходить n^2 .

<u>Пример.</u> Отождествим школьников каждого класса с множеством $\{0,1,\ldots,n-1\}=\mathbb{Z}_n$. Таким образом, вместо троек школьников будем рассматривать упорядоченные тройки остатков по модулю n. В качестве примера рассмотрим n^2 троек вида $(a,b,a+b \mod n)$, где $a,b\in\mathbb{Z}_n$. Тройка такого вида однозначно задается любыми своими двумя элементами (третий — это их сумма или разность по модулю n), поэтому никакая пара школьников не попадала в тройку добровольцев более одного раза.

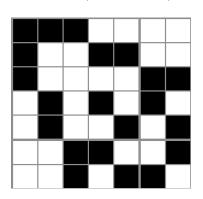
5. Какое наибольшее количество клеток можно отметить в квадрате 7×7 так, чтобы центры никаких четырех отмеченных клеток не образовывали прямоугольник со сторонами, параллельными линиям сетки? Идея. Провести оценку путем подсчета числа пар строк двумя способами.

Решение. <u>Оценка.</u> Пусть в квадрате отмечено N клеток, удовлетворяющих условию, причем в i-ой его строке отмечено a_i клеток (тем самым, $a_1+a_2+\cdots+a_7=N$). Поставим в соответствие каждой (неупорядоченной) паре отмеченных в одном столбце клеток (неупорядоченную) пару строк, в которых они расположены. Заметим, что повторяться пары строк не могут, иначе отмеченные клетки будут образовывать прямоугольник. Общее число пар строк равно $C_7^2=21$. С другой стороны, в i-ом столбце ровно $C_{a_i}^2=\frac{a_i(a_i-1)}{2}$ пар отмеченных клеток. Таким образом,

$$21 \ge \sum_{i=1}^{7} \frac{a_i(a_i - 1)}{2} = \frac{1}{2}(a_1^2 + a_2^2 + \dots + a_7^2) - \frac{N}{2}.$$

Воспользуемся известным неравенством для вещественных чисел: $n(a_1^2+a_2^2+\cdots+a_n^2)\geq (a_1+a_2+\cdots+a_n)^2,$ равенство в котором достигается, если и только если $a_1=a_2=\ldots=a_n$ (это можно доказать, например, раскрыв скобки: перенести слагаемые в левую часть и сгруппировать полные квадраты с 2-мя переменными). Тогда $21\geq \frac{N^2}{14}-\frac{N}{2},$ что равносильно: $0\geq N^2-7N-21\cdot 14=(N+14)(N-21).$ Значит, $N\in [-14;21],$ в частности, $N\leq 21.$

<u>Пример.</u> Построим пример для 21 отмеченной клетки. Согласно написанному выше, это возможно только тогда, когда в каждом столбце поровну клеток (то есть по 3). Один из возможных примеров:



Этот пример можно построить по следующему алгоритму.

Идем от первого столбца к последнему, а в каждом столбце — сверху вниз.

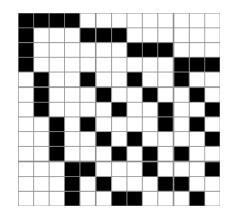
- 1) Если в столбце еще нет отмеченных клеток, то отмечаем клетку, на которой стоим, если в этом столбце можно отметить еще одну клетку так, что не образуется "отмеченного" прямоугольника.
- 2) Если в столбце уже есть отмеченная клетка, то отмечаем клетку, на которой стоим, если это возможно (то есть не образуется "отмеченного" прямоугольника).

Замечание. Система трехэлементных подмножеств *п*-элементного множества называется *системой троек Штейнера*, если любое двуэлементное подмножество множества содержится ровно в одном трехэлементном. Построенный пример иллюстрирует систему троек Штейнера для 7-элементного множества.

6. В группе кружка 13 человек. В каждый из 13 дней некоторые из них ходили в кафе. Оказалось, что каждый день в кафе приходило хотя бы два человека из группы, и за эти 13 дней каждые два человека встретились в кафе ровно один раз. Обязательно ли кто-то из них посетил кафе 12 раз?

Идея. Связать задачу с предыдущей и построить пример.

Решение. Не обязательно. Рассмотрим квадрат 13×13 . "По оси абсцисс" будем отсчитывать дни, а "по оси ординат" — номера участников кружка. Соответственно, будем отмечать в квадрате клетку (i,j), если j-ый участник кружка посетил кафе в i-ый день $(i,j=1,2,\ldots,13)$. Из условия следует, что есть взаимно-однозначное соответствие между парами строк и парами отмеченных в одном столбце клеток, в частности, нет "отмеченных" прямоугольников, как и в задаче 5. Пример посещения кафе:



Замечание. На мысль о существовании примера наталкивает то же неравенство (вновь через a_i обозначим число отмеченных клеток в i-ом столбце, а максимальное число отмеченных клеток без "отмеченных" прямоугольников — через N):

$$C_{13}^2 = 78 = \sum_{i=1}^{13} \frac{a_i(a_i - 1)}{2} = \frac{1}{2}(a_1^2 + a_2^2 + \dots + a_{13}^2) - \frac{N}{2} \ge \frac{N^2}{26} - \frac{N}{2} = \frac{N^2 - 13N}{26}.$$

Следовательно, $0 \ge N^2 - 13N - 26 \cdot 78 = (N - 52)(N + 39)$, откуда $N \le 52$, причем равенство возможно, только если в каждом столбце поровну клеток (то есть по 4).

Далее можно (вплоть до 9-го столбца) применять алгоритм из предыдущей задачи.

7. Даны 2n различных чисел: a_1, a_2, \ldots, a_n и b_1, b_2, \ldots, b_n . Клетки таблицы $n \times n$ заполнили числами следующим образом: на пересечении i-ой строки и j-го столбца записали $a_i + b_j$. Оказалось, что произведение чисел в каждом столбце таблицы одинаково. Докажите, что произведение чисел в каждой строке таблицы одинаково.

Идея. Выписав произведение чисел в каждом столбце, связать с ними многочлен.

Решение. Будем считать, что n > 1. Обозначим через c произведение чисел в каждом столбце. Для j-го столбца оно равно:

$$c = (b_j + a_1)(b_j + a_2) \dots (b_j + a_n).$$

Введем многочлен $P(x) = (x+a_1)(x+a_2)\dots(x+a_n)$. Отметим, что $P(b_1) = P(b_2) = \dots = P(b_n) = c$, значит, различные числа b_1, b_2, \dots, b_n — корни многочлена P(x) - c степени n. Учитывая старший коэффициент,

$$P(x) - c = (x - b_1)(x - b_2) \dots (x - b_n).$$

Подставим в это равенство $x = -a_i$:

$$-c = P(-a_i) - c = (-a_i - b_1)(-a_i - b_2) \dots (-a_i - b_n) = (-1)^n (a_i + b_1)(a_i + b_2) \dots (a_i + b_n).$$

Значит, произведение чисел в i-ой строке таблицы равно $(a_i + b_1)(a_i + b_2) \dots (a_i + b_n) = (-1)^{n+1}c$ — то есть постоянно.