группа: **7** класс *14 марта 2020 г.*

[2019–2020]

Разбиения натурального ряда

Дано положительное число α . Рассмотрим последовательность $\{a_n\} = a_1, a_2, \ldots$, при всех натуральных n определённую соотношением $a_n = [n\alpha]$. Символом [x] обозначена uenas часть числа x— наибольшее целое число, не превосходящее x.

- **1.** Пусть m натуральное число, а α положительное иррациональное число. Докажите, что количество элементов последовательности $\{a_n\}$, меньших m, равно $\left[\frac{m}{\alpha}\right]$.
- **2.** Пусть α и β положительные числа, удовлетворяющие условию $\frac{1}{\alpha} + \frac{1}{\beta} = 1$, а m натуральное число.
 - (a) Докажите, что $m-1 \leqslant \left[\frac{m}{\alpha}\right] + \left[\frac{m}{\beta}\right] \leqslant m$.
 - (b) В каких случаях $\left[\frac{m}{\alpha}\right] + \left[\frac{m}{\beta}\right]$ равняется m-1, а каких m?
- **3.** Пусть α и β положительные иррациональные числа. Рассмотрим последовательности $\{a_n\}$ и $\{b_n\}$, определённые формулами $a_n = [n\alpha], b_n = [n\beta].$
 - (a) Докажите, что если $\frac{1}{\alpha} + \frac{1}{\beta} = 1$, то каждое натуральное число содержится ровно в одной из последовательностей $\{a_n\}$ и $\{b_n\}$.
 - (b) Докажите, что если каждое натуральное число содержится ровно в одной из последовательностей $\{a_n\}$ и $\{b_n\}$, то $\frac{1}{\alpha} + \frac{1}{\beta} = 1$.
- **4.** Докажите, что натуральный ряд можно так разбить на две непересекающиеся последовательности $\{a_n\}, \{b_n\},$ что $b_n = a_n + n$. Указание. Рассмотрите $\alpha = \frac{1+\sqrt{5}}{2}, \beta = \frac{3+\sqrt{5}}{2}$.
- **5.** Докажите, что натуральный ряд можно так разбить на две непересекающиеся последовательности $\{a_n\}, \{b_n\},$ что $b_n = a_n + 2n$.