Кружок в "Хамовниках". 2019-2020 учебный год. 11 класс. Группа 11-1. Серия 15. Коники, поники, слоники...

1 Вспоминаем свойства проективных преобразований

- **1.** а) Докажите, что проецирование с прямой l в пучок прямых α в точке A (проективной) плоскости, не лежащей на l, является проективным преобразованием.
- б) Докажите, что проецирование из пучка прямых в точке A на конику α , проходящую через A, является проективным преобразованием.
- в) Докажите, что проецирование с коники α на себя через точку A вне α является проективным преобразованием.
- г) Пусть прямая l касается коники α в точке A. Для каждой точки $B \in \alpha \setminus \{A\}$ строится касательная m(B) к α в точке B. Докажите, что отображение $\varphi: \alpha \to l, B \mapsto m(B) \cap l, A \mapsto A$ является проективным преобразованием.

 ${\it Подсказка}.$ Доказывать утверждение для случайной коники сложно, а для окружности — уже не кажется непосильной работой.

- **2** (Конструкция Штейнера, часть I). Даны прямые l u m, пересекающиеся в точке Y, u проективное преобразование $\varphi: l \to m$. Рассматривается семейство Σ прямых проходящих через всевозможные пары образов u ux прообразов.
- а) Докажите, что если точка пересечения прямых переходит в себя ($\varphi(Y) = Y$), то все прямые семейства Σ проходят через фиксированную точку P, не лежащую на прямых l и m.
- б) Пусть $\varphi(Y) \neq Y$. Рассмотрите $X := \varphi^{-1}(Y), \ Z := \varphi(Y)$ и ещё какие-нибудь отличные от X, $Y, \ Z$ точки S и T, что $\varphi(S) = T$. Примените проективное преобразование плоскости, которое переведёт $X, \ Y, \ Z, \ S$ и T в такие точки, что вписанная окружность $\triangle SYT$ будет касалаться прямых \overline{SY} и \overline{YT} в точках X и Y соответственно.
- в) Докажите, что если $\varphi(Y) \neq Y$, то все прямые семейства Σ касаются некоторой коники γ , которая касается прямых l и m.
- 3 (Конструкция Штейнера, часть II). Даны пучки прямых α и β в разных точках A и B, и проективное преобразование $\varphi: \alpha \to \beta$. Рассматривается семейство Σ точек пересечения всевозможных пар образов и их прообразов. Возьмите какие-нибудь три точки $P,Q,R\in\Sigma$, которые не лежат на \overline{AB} . Понятно, что никакие четыре точки из $\{A;B;P;Q;R\}$ не лежат на одной прямой, поэтому через эти пять точек проходит единственная квадрика γ (примите это очевидным; есть несложная теорема, которое это доказывает).
 - а) Покажите, что если γ вырождена (т.е. является двумя прямыми), то это объединение прямых \overline{AB} и \overline{PQR} . Докажите, что тогда $\varphi(\overline{AB}) = \overline{AB}$. Покажите тем самым, что φ является композицией проекций из α на \overline{PQR} и с \overline{PQR} в β . Это означает, что Σ это прямая (за некоторыми исключениями).
 - б) Пусть γ невырождена. Тогда γ это коника. Покажите, что $\varphi(\overline{AB}) \neq \overline{AB}$ и φ является композицией проекций из α на γ и c γ в β .
 - в) Опишите Σ по тому, переходит ли \overline{AB} в себя при действии φ .

2 Применяем методы на практике

- 4. Let AB and AC be two distinct rays not lying on the same line, and let ω be a circle with center O that is tangent to ray AC at E and ray AB at F. Let R be a point on segment EF. The line through O parallel to EF intersects line AB at P. Let N be the intersection of lines PR and AC, and let M be the intersection of line AB and the line through R parallel to AC. Prove that line MN is tangent to ω .
- **5.** A convex quadrilateral ABCD is circumscribed about a circle ω . Let PQ be the diameter of ω perpendicular to AC. Suppose lines BP and DQ intersect at point X, and lines BQ and DP intersect at point Y. Show that the points X and Y lie on the line AC.
- **6.** Circles ω_1 and ω_2 intersect each other at points A and B. Point C lies on the tangent line from A to ω_1 such that $\angle ABC = 90^{\circ}$. Arbitrary line l passes through C and cuts ω_2 at points P and Q. Lines AP and AQ cut ω_1 for the second time at points X and Z respectively. Let Y be the foot of altitude from A to l. Prove that points X, Y and Z are collinear.

- 7. На сторонах AB и BC треугольника ABC выбрали точки P и Q соответственно, что $A,\ C,\ P$ и Q лежат на одной окружности. Прямые AQ и PC пересекаются в точке $R.\ \Omega$ и ω описанные окружности треугольников ABC и PBQ.
 - а) B'- точка, диаметрально противоположная B в Ω . Докажите, что Ω , ω и прямая B'R пересекаются в одной точке.
 - б) AR вторично пересекает Ω в точке X, XP- в точке Y, а XQ- в точке Z. Докажите, что прямая YZ проходит через центр окружности Аполлония вершины B треугольника ABC.
- 8. Let ABCD be a cyclic quadrilateral, and let diagonals AC and BD intersect at X. Let C_1 , D_1 and M be the midpoints of segments CX, DX and CD, respectively. Lines AD_1 and BC_1 intersect at Y, and line MY intersects diagonals AC and BD at different points E and F, respectively. Prove that line XY is tangent to the circle through E, F and X.
- 9. Пусть AA_1 и BB_1 высоты остроугольного неравнобедренного треугольника ABC. Известно, что отрезок A_1B_1 пересекает среднюю линию, параллельную AB, в точке C_1 . Докажите, что отрезок CC_1 перпендикулярен прямой, проходящей через точку пересечения высот и центр описанной окружности трегуольника ABC.
- **10.** In triangle ABC, point A_1 lies on side BC and point B_1 lies on side AC. Let P and Q be points on segments AA_1 and BB_1 , respectively, such that PQ is parallel to AB. Let P_1 be a point on line PB_1 , such that B_1 lies strictly between P and P_1 , and $\angle PP1C = \angle BAC$. Similarly, let Q_1 be a point on line QA_1 , such that A_1 lies strictly between Q and Q_1 , and $\angle CQ_1Q = \angle CBA$. Prove that points P, Q, P_1 , and Q_1 are concyclic.

3 Дополнительные задачи, связанные с движениями

- 11. Let ABC be an acute-angled triangle with circumcircle Γ . Let D and E be points on the segments AB and AC, respectively, such that AD = AE. The perpendicular bisectors of the segments BD and CE intersect the small arcs AB and AC at points F and G respectively. Prove that $DE \parallel FG$.
- 12 (Теорема о трёх кониках). Пусть коники α , β , γ проходят через точки P_1 и P_2 . Также α и β пересекаются в точках C_1 и C_2 , β и γ в A_1 и A_2 , γ и α в B_1 и B_2 .
 - а) Покажите, что если T_1,\ldots,T_5 какие-то точки на конике τ , $S_1:=\overline{T_1T_2}\cap\overline{T_4T_5}$, $S_2:=\overline{T_1T_5}\cap\overline{T_2T_3}$, $X:=\overline{T_3T_4}\cap\overline{S_1S_2}$, то $\overline{XT_1}$ касательная к τ .
 - б) Пусть T_1, \ldots, T_4 из прошлого пункта фиксированы. Для каждой точки T_5 на конике можно сопоставить прямую $l(T_5) := \overline{S_1S_2}$, где $S_1 := \overline{T_1T_2} \cap \overline{T_4T_5}$, а $S_2 := \overline{T_1T_5} \cap \overline{T_2T_3}$. Покажите, что все такие прямые проходят через фиксированную точку. Покажите также, что отображение l из коники τ в некоторый пучок прямых проективно.
 - в) Временно выкининем из условия α , C_1 и C_2 . Фиксируем P, Q, B_1 , B_2 и β и будем менять γ , а c ней и A_1 , A_2 . Рассмотрите композицию проекций с $\overline{B_1B_2}$ на β через P и с β на $\overline{B_1P}$ через Q. Покажите, что все прямые проходящие через образы и их прообразы касаются некоторой коники.
 - г) Пусть $T_1:=P$, $T_2:=B_1$, $T_3:=B_2$ и $T_4:=Q$. Тогда S_1 , и S_2 определим так же, как и в пункте б, но для люой точки T_5 . При каких условиях на $\overline{S_1S_2}$ T_5 будет лежать на γ , а при каких на β ?
 - д) Докажите, теорему о трёх кониках: прямые $\overline{A_1A_2}$, $\overline{B_1B_2}$ и $\overline{C_1C_2}$ конкурентны.
- 13. Внутри остроугольного треугольника ABC выбраны точки P и Q такие, что $\angle ABP = \angle CBQ$ и $\angle ACP = \angle BCQ$ (т.е. изогонально сопряженные точки). Через точки P и Q провели прямые, перпендикулярные биссектрисе угла BAC (см. рисунок). Эти перпендикуляры пересекают отрезки AC и AB в точках B_p , B_q , C_p , C_q . Пусть W середина дуги BAC описанной окружности Ω треугольника ABC. Прямые WP и WQ пересекают вторично Ω в точках P_1 и Q_1 . Докажите, что точки P_1 и Q_1 лежат на описанной окружности трапеции $B_pB_qC_qC_p$.