Серия 20. Разнобойная.

- **1.** Натуральное число n таково, что ни при каких натуральных a и b число $2^a 3^b + 1$ не делится на n. Докажите, что $2^c + 3^d$ также не делится на n ни при каких натуральных c и d.
- **2.** Пусть $a_1, a_2, \ldots, a_{2020}$ перестановка чисел $1, 2, \ldots, 2020$. Какое наибольшее количество чисел среди чисел $a_1^2 + a_2, a_2^2 + a_3, \ldots, a_{2019}^2 + a_{2020}, a_{2020}^2 + a_1$ могут быть точными квадратами?
- **3.** Ринат и Марат играют в игру «Морской бой-2000». На доске 1×200 они по очереди ставят на свободные клетки доски букву «S» или «O», начинает Ринат. Выигрывает тот, кто первым получает слово «SOS». Каков результат игры при правильной игре?
- **4.** В остроугольном треугольнике ABC провели высоты AA_1 , BB_1 и CC_1 . Биссектриса угла AA_1C пересекает отрезки CC_1 и CA в точках E и D соответственно. Биссектриса угла AA_1B пересекает отрезки BB_1 и BA в точках F и G соответственно. Описанные окружности треугольников FA_1D и EA_1G пересекаются в точках A_1 и X. Докажите, что $\angle BXC = 90^\circ$.
- **5.** Биссектриса угла CAB треугольника ABC пересекает сторону CB в точке L. Точка D- основание перпендикуляра из вершины C на AL, а точка E- основание перпендикуляра из точки L на AB. Прямые CB и DE пересекаются в точке F. Докажите, что AF- высота в треугольнике ABC.
- **6.** Для каждого натурального числа $n \ge 2$ рассмотрим последовательность $a_k = \operatorname{lcm}(k, k+1, \dots, k+(n-1))$. Найдите все такие n, для которых последовательность a_k начиная с какого-то момента строго возрастает.
- 7. Найдите все такие натуральные n, для которых все натуральные делители n можно расположить в клетках какой-нибудь прямоугольной таблицы так, чтобы выполнялись условия:
- (i) в каждой клетке расположен делитель, все они различны
- (ii) сумма чисел в каждом столбце одна и та же
- (iii) сумма чисел в каждой строке одна и та же.
- 8. Дано натуральное n, взаимно простое с 6. Вершины правильного n-угольника раскрасили в три цвета так, что вершин каждого цвета нечётное число. Докажите, что существует равнобедренный треугольник с вершинами трёх разных цветов.