[ЦПМ, кружок по математике, 10 класс] [2019–2020]

Попов Л., Соколов А., Чепасов А. группа: 10-3 *19 декабря 2019 г.*

Многочлены над полем \mathbb{Z}_p

Определение. Множество элементов F с введёнными на нём алгебраическими операциями сложения + и умножения * ($\forall a,b \in F$ $(a+b) \in F$, $a*b \in F$) называется *полем* (F,+,*), если выполнены следующие аксиомы:

- Коммутативность сложения: $\forall a, b \in F \quad a+b=b+a$.
- Ассоциативность сложения: $\forall a, b, c \in F \quad (a+b) + c = a + (b+c)$.
- Существование нулевого элемента: $\exists 0 \in F : \forall a \in F \quad a+0=a.$
- Существование противоположного элемента: $\forall a \in F \ \exists (-a) \in F : a + (-a) = 0.$
- Коммутативность умножения: $\forall a, b \in F \quad a * b = b * a$.
- Ассоциативность умножения: $\forall a, b, c \in F \quad (a * b) * c = a * (b * c)$.
- Существование единичного элемента: $\exists 1 \in F : \forall a \in F \ a*1 = a$.
- Существование обратного элемента для ненулевых элементов: $(\forall a \in F \colon a \neq 0) \; \exists a^{-1} \in F \colon a * a^{-1} = 1.$
- Дистрибутивность умножения относительно сложения: $\forall a, b, c \in F \quad (a+b) * c = (a*c) + (b*c).$
- **1.** Докажите, что множество остатков при делении на простое число p является полем. Оно обозначается \mathbb{Z}_p .

Определение. Многочленом f(x) над конечным полем $\mathbb F$ называется формальная сумма вида

$$f(x) = f_0 + f_1 x + \ldots + f_m x^m, f_i \in \mathbb{F}, f_m \neq 0.$$

Множество многочленов над полем \mathbb{F} обозначается $\mathbb{F}[x]$.

- **2.** (a) Сформулируйте и докажите теорему Безу для многочленов над полем \mathbb{Z}_p .
 - (b) Сформулируйте и докажите теорему Виета для многочленов над полем \mathbb{Z}_p .
- **3.** (a) Разложите на множители над \mathbb{Z}_p многочлен $x^{p-1} 1$.
 - (b) Пользуясь предыдущим пунктом, докажите теорему Вильсона:
 - $(p-1)! \equiv -1 \pmod{p}$ при простом p.
 - (c) Найдите сумму $\sum_{0 < x < y < z < p} xyz \pmod{p}$.
- **4.** (a) Пусть $f(x), g(x) \in \mathbb{Z}_p[x]$. При этом для любого $c \in \mathbb{Z}_p$ выполнено f(c) = g(c). Докажите, что f(x) g(x) делится на $x^p x$.
 - (b) Пусть $f: \mathbb{Z}_p \to \mathbb{Z}_p$ произвольная функция. Тогда найдется многочлен $f(x) \in \mathbb{Z}_p[x]$, для которого при любом c выполнено f(c) = g(c). (Другими словами, при работе с полем \mathbb{Z}_p не имеет смысла рассматривать какие-либо функции кроме многочленов.)

- **5.** Пусть для натурального числа n и простого числа p нашлись натуральные числа a_1, \ldots, a_{n+1} такие, что их n-е степени дают одинаковые остатки при деление на p. Докажите, что какие-то a_i и a_j дают одинаковые остатки при деление на p.
- **6.** Докажите, что над полем \mathbb{Z}_p существует бесконечно много неприводимых многочленов. (Неприводимый многочлен это многочлен, который нельзя представить в виде произведения двух многочленов ненулевой степени)
- 7. (Критерий Эйзенштейна) Пусть f(x) многочлен с целыми, у которого старший коэффициент не делится на простое число p, все остальные коэффициенты делятся на p, а свободный член не делится на p^2 . Тогда f(x) неприводим над \mathbb{Z} . (То есть не представляется в виде произведения двух многочленов ненулевой степени с целыми коэффициентами)
- **8.** Докажите, что многочлен $x^{n-1} + x^{n-2} + \ldots + 1$ неприводим тогда и только тогда, когда n простое число.