группа: 10-3

Попов Л., Соколов А. 30 сентября 2019 г.

Симметрические многочлены

Определение. Многочлен от n переменных называется $\mathit{симметрическим}$, если он не меняется при любых перестановках его переменных.

Определение. Элементарные симметрические многочлены

$$\sigma_k = \sum_{1 \leqslant i_1 < \dots < i_k \leqslant n} x_{i_1} x_{i_2} \cdots x_{i_k}$$

Основная теорема о симметрических многочленах. Всякий симметрический многочлен единственным образом представляется в виде многочлена от элементарных симметрических многочленов.

- **1.** Пусть дан симметрический многочлен от n переменных $P(x_1, x_2, \dots, x_n)$. Рассмотрим все его одночлены. Назовем одночлен $q = ax_1^{\alpha_1}x_2^{\alpha_2}\cdots x_n^{\alpha_n}$ старшим, если упорядоченный набор степеней $(\alpha_1, \alpha_2, \cdots, \alpha_n)$ мажорирует все остальные наборы относительно лексикографического порядка.
 - (a) Для любого одночлена $q = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$ существуют такие неотрицательные целые числа $\beta_1, \beta_2, \ldots, \beta_n$, что старший член многочлена $\sigma_1^{\beta_1} \sigma_2^{\beta_2} \cdots \sigma_n^{\beta_n}$ совпадает с q. Причем числа $\beta_1, \beta_2, \ldots, \beta_n$ определены этим условием однозначно.
 - (b) Докажите основную теорему о симметрических многочленах.
- 2. Выразите через основные симметрические многочлены
 - (a) $x^2 + y^2 + z^2$;
 - **(b)** $x^3 + y^3 + z^3$;
 - (c) $x^4 + y^4 + z^4$.
- **3.** Известно, что x_1, x_2, x_3 корни уравнения $x^3 2x^2 + x + 1 = 0$. Составьте новое уравнение, корнями которого были бы числа
 - (a) $y_1 = x_2 + x_3$, $y_2 = x_1 + x_3$, $y_3 = x_1 + x_2$;
 - **(b)** $y_1 = x_2x_3, y_2 = x_1x_3, y_3 = x_1x_2.$
- 4. Есть многочлен с рациональными коэффициентами. Докажите, что любой симметрический многочлен от его (комплексных) корней есть рациональное число.
- **5.** Многочлен $x^{2019} + y^{2019}$ выразили через элементарные симметрические, как P(xy, x + y). Найдите сумму коэффициентов многочлена P.
- **6.** Пусть α корень многочлена f(x) с рациональными коэффициентами, β корень многочлена g(x) с рациональными коэффициентами. Докажите, что найдется многочлен с рациональными коэффициентами, корнем которого является (a) $\alpha + \beta$; (b) $\alpha\beta$.
- 7. Докажите, что произведение всех чисел вида $\pm \sqrt{1} \pm \sqrt{2} \pm \sqrt{3} \pm \cdots \pm \sqrt{2019}$ является целым числом.