Попов Л., Соколов А., Трещев В. группа: 9-3 *13 мая 2019 г.*

Композиция гомотетий

- **1.** Даны гомотетии H_A^k и H_B^l . Докажите, что композиция $H_A^k \circ H_B^l$ является гомотетией или параллельным переносом.
- **2.** Найдите все гомотетии, которые переводят окружность ω в саму себя (как множество точек).
- **3.** На плоскости нарисованы три непересекающихся неравных круга. Для каждой пары кругов отметили две точки пересечения общих касательных: одну внешних, вторую внутренних.
 - (a) (*Теорема о трёх колпаках*) Докажите, что точки пересечения внешних общих касательных лежат на одной прямой.
 - (**b**) Докажите, что если центры кругов не лежат на одной прямой, то все шесть отмеченных точек служат вершинами *четырёхсторонника*, т. е. лежат по три на четырёх прямых.
- **4.** На плоскости зафиксированы две неравные окружности α и β . Произвольная окружность ω касается их внутренним образом в точках A_{ω} и B_{ω} соответственно. Докажите, что все прямые $A_{\omega}B_{\omega}$ проходят через одну точку, не зависящую от выбора ω .
- **5.** На продолжении стороны CD трапеции ABCD $(AD \parallel BC)$ за точку D отмечена точка P, точка M середина AD. Прямые PM и AC пересекаются в точке Q, PB и AD в точке X, а BQ и AD в точке Y. Докажите, что M середина XY.
- **6.** Внутри треугольника ABC расположены три непересекающихся круга: ω_A , ω_B , ω_C . Каждый из них касается двух соответственных сторон треугольника. Круг ω касается внешним образом их всех в точках A', B', C' соответственно. Докажите, что прямые AA', BB', CC' пересекаются в одной точке.
- 7. Дан выпуклый четырёхугольник ABCD. Лучи AB, DC пересекаются в точке P, а лучи AD, BC в точке Q. Из точек P и Q внутрь углов APD и AQB проведено ещё по два луча, разбивающие четырёхугольник ABCD на девять частей. Известно, что в части, примыкающие к вершинам B, C, D, можно вписать окружность. Докажите, что в часть, примыкающую к вершине A, также можно вписать окружность.
- 8. В угол с вершиной O вписаны две окружности ω_1 и ω_2 . Луч с началом в точке O пересекает ω_1 в точках A_1 и B_1 , а ω_2 в точках A_2 и B_2 ($OA_1 < OB_1 < OA_2 < OB_2$). Окружность γ_1 касается внутренним образом окружности ω_1 и касательных к ω_2 , проведённых из A_1 . Окружность γ_2 касается внутренним образом окружности ω_2 и касательных к ω_1 , проведённых из B_2 . Докажите, что окружности γ_1 и γ_2 равны.