Серия 25.Выпуклые оболочки

Определение. Фигура называется *выпуклой*, если для любых двух её точек отрезок, соединяющий эти точки, целиком принадлежит фигуре.

Определение. Выпуклой оболочкой фигуры называется наименьшее выпуклое множество, содержащее данную фигуру (в качестве фигуры может выступать конечное множество точек).

- 1. При каком наибольшем n на плоскости можно отметить n точек, никакие три из которых не лежат на одной прямой так, чтобы любая незамкнутая ломаная, проходящая через каждую из этих точек ровно по 1 разу, была несамопересекающейся?
- **2.** На плоскости дано $n \geqslant 4$ точек. Известно, что любые 4 из них являются вершинами выпуклого четырехугольника. Докажите, что эти n точек являются вершинами выпуклого n-угольника.
- **3.** Докажите, что из любых шести точек на плоскости, никакие три из которых не лежат на одной прямой, можно выбрать такие три, что у треугольника с вершинами в этих точках один из углов не больше 30° .
- **4.** На плоскости дано несколько правильных n-угольников. Докажите, что выпуклая оболочка их вершин имеет не менее n углов.
- **5.** На плоскости дано $n \ge 4$ точек, причем никакие три из них не лежат на одной прямой. Докажите, что если для любых трех из них найдется четвертая (тоже из данных), с которой они образуют вершины параллелограмма, то n = 4.
- **6.** На плоскости даны 3n-1 точек, никакие 3 из которых не лежат на одной прямой. Докажите, что можно выбрать 2n из этих точек так, чтобы их выпуклая оболочка не была треугольником.
- 7. Найдите наименьшее n, что из любых n точек, никакие три из которых не лежат на одной прямой, можно выбрать 5, являющихся вершинами выпуклого пятиугольника.

Рубрика "Намедни".

6-7(уже была в этой рубрике, но ещё не разбирали). В стране 2000 городов, любые два соединены самолётом, поездом или пароходом. Для какого наименьшего k гарантированно можно выбрать k городов и один из видов транспорта так, чтобы из любого из этих k городов можно было этим видом транспорта добраться до любого другого?

15-5. Положительные числа a, b, c, d таковы, что

$$abcd=1 \qquad \text{ if } \qquad a+b+c+d>\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}.$$

Докажите, что

$$a+b+c+d < \frac{b}{a} + \frac{c}{b} + \frac{d}{c} + \frac{a}{d}$$
.