
Вспомогательная раскраска

- **0.** Применим диагональную раскраску в 4 цвета к квадрату 10×10 .
 - (а) Сколько клеток каждого цвета мы получим?
 - (b) Сколько клеток каждого цвета может содержать прямоугольник 1 × 4?
 - (с) Можно ли разрезать квадрат 10×10 на прямоугольники 1×4 ?
- 1. Из шахматной доски вырезали две противоположные угловые клетки. Можно ли оставшуюся фигуру разрезать на прямоугольники 1×2 ?
- **2.** Можно ли разбить квадрат 8×8 с отрезанным уголком на прямоугольники 1×3 ?
- **3.** Можно ли разрезать квадрат 10×10 на Т-тетраминошки? (Домино, тримино, тетрамино, пентамино, ... фигурки, составленные из 2, 3, 4, 5, ... клеток соответственно.)
- **4.** Можно ли разрезать квадрат 8×8 на 17 вертикальных и 15 горизонтальных доминошек?
- **5.** Какое наибольшее количество прямоугольников 1×4 можно разместить в квадрате 6×6 (не нарушая границ клеток)?
- 6. Известно, что квадрат клетчатой бумаги размерами 8×8 покрыли несколькими плитками 2×2 и несколькими полосками 1×4 . Можно ли покрыть квадрат 8×8 , если одну плитку заменить полоской?
- 7. На каждой клетке доски 7×7 сидит жук. В некоторый момент времени все жуки переползают на соседние по стороне клетки. Докажите, что при этом окажется хотя бы одна пустая клетка.
- 8. Квадрат 8×8 клеток выкрашен в белый цвет. Разрешается выбрать в нём любой прямоугольник 1×3 и перекрасить все их в противоположный цвет (белые в чёрный, чёрные в белый). Удастся ли несколькими такими операциями перекрасить весь квадрат в чёрный цвет?