группа: Первая страта 7 класс

20 октября 2018 г

Сравнения

Определение. Числа, дающие одинаковые остатки при делении на m, называются сравнимыми по модулю m.

Обозначается $a \equiv b \pmod{m}$.

Упражнение. Докажите, что $a \equiv b \pmod m$ тогда и только тогда, когда a-b делится на m.

Свойства сравнений.

Пусть $a \equiv b \pmod{m}$, $c \equiv d \pmod{m}$, k – произвольное целое число. Тогда:

- a) $ka \equiv kb \pmod{m}$; b) $a + c \equiv b + d \pmod{m}$; c) $ac \equiv bd \pmod{m}$; d) $a^k \equiv b^k \pmod{m}$.
 - 1. Найдите остатки от деления
 - (a) $7778 \cdot 7779 \cdot 7780 \cdot 7781 \cdot 7782 \cdot 7783$ на 7;
 - (b) $2014 \cdot 2015 \cdot 2016 \cdot 2017$ Ha 2018;
 - (c) $1 \cdot 3 \cdot 5 \cdot \ldots \cdot 101 + 2 \cdot 4 \cdot 6 \cdot \ldots \cdot 102$ на 103.
 - (d) 47¹⁰¹ на 46, 48, 31;
 - (e) $7^{2012} + 9^{2015}$ на 10;
 - (f) 3²⁰¹⁶ на 7.
 - 2. Докажите, что $2^{100} \equiv 3^{100} \pmod{13}$;
 - 3. Докажите, что при любом натуральном n:
 - (g) $16^{n+2} + 23^{n+1} + 37^n$ делится на 7;
 - (h) $2^{5n+3} + 5^n \cdot 3^{n+2}$ делится на 17.
 - 4. Докажите, что $2013! + \frac{4026!}{2013!}$ делится на 4027.
 - 5. Докажите, что число $(3^n-1)^n-4$ делится на 3^n-4 при любом натуральном n.
 - 6. Докажите, что $1^n + 2^n + \ldots + (n-1)^n$ делится на n при нечетном n.
 - 7. Докажите, что существует бесконечно много натуральных чисел не представимых в виде суммы трёх точных кубов.
 - 8. Существует ли натуральное n, такое что $n^2 + n + 1$ делитя на 2015.
 - 9. Найдите остаток от деления на 7 числа $10^{10}+10^{100}+\ldots+10^{10000000000}$.