«Плохая» индукция $8 \kappa nacc$

	28.02.18
1.	«Утверждение». При любом натуральном n числа n и $n+1$ равны. «Доказательство». Предположим, что утверждение верно для $n=k$, то есть $k=k+1$. Прибавляя к обеим частям этого равенства единицу, получаем, что $k+1=k+2$. Рассуждая так дальше, получаем, что все числа равны.
2.	«Утверждение». В любом графе с $n\geqslant 3$ вершинами и n рёбрами обязательно естетри вершины, попарно соединённые рёбрами. «Доказательство». При $n=3$ утверждение очевидно. Предположим, что в графе с $k\geqslant 3$ вершинами и k рёбрами обязательно есть три вершины, попарно соединённые рёбрами. Добавим ещё одну вершину и соединим ребром две несоединёные ранее вершины. Получим граф с $k+1$ вершинами и $k+1$ рёбрами и в нём есть три вершины попарно соединённые рёбрами.
3.	«Утверждение». При разбиении прямоугольника на $n\geqslant 2$ прямоугольников всегда найдутся два, у которых совпадают две вершины. «Доказательство». При $n=2$ утверждение верно. Предположим, что при разбиении прямоугольника на $k\geqslant 2$ прямоугольников всегда найдутся два, у которых совпадают две вершины. Разделим какой-нибудь прямоугольник на два прямоугольника. Тогда эти у этих двух прямоугольников совпадают две вершины. Итак, мы получили, что данный прямоугольник разбит на $k+1$ прямоугольников среди которых естедва, у которых совпадают две вершины.
4.	«Утверждение». Любые n чисел равны. «Доказательство». Если $n=1$, то доказывать нечего: число только одно и оно равно самому себе. Предположим, что любые k чисел равны и докажем, что любые $k+1$ чисел равны. Рассмотрим произвольные $k+1$ числел $a_1, a_2, \ldots, a_k, a_{k+1}$. Отбросив последнее число, получим набор из k чисел. По предположению индукции они равны: $a_1=a_2=\ldots=a_k$. Теперь отбросим первое число. Снова получим набор из k чисел, и предположение индукции даёт $a_2=\ldots=a_k=a_{k+1}$. Объединяя эти два равенства, получаем, что $a_1=a_2=\ldots=a_k=a_{k+1}$, что и требовалось доказать.
5.	«Утверждение». Любые n точек лежат на одной прямой. «Доказательство». При $n=1$ это ясно. Предположим, что любые k точек лежат на одной прямой и докажем, что любые $k+1$ точек лежат на одной прямой. Рассмотрим произвольные $k+1$ точек $A_1, A_2, \ldots, A_k, A_{k+1}$. Отбросим последнюю точку и применим предположение индукции. Получим прямую l , на которой лежат точки A_1, A_2, \ldots, A_k . Нам надо доказать, что и последняя точка A_{k+1} лежит на этой прямой. Отбросим первую точку и применим предположение индукции к точкам A_2 . A_3, \ldots, A_{k+1} . Получим, что они все лежат на некоторой прямой l' . Но прямые l и l' совпадаают, так как обе они проходят через точки A_2 и A_k , а как известно, через две точки можно провести только одну прямую. Поэтому все $k+1$ точек лежат на одной прямой.
6.	«Утверждение». Если $\max(a,b)=n$, где a и b натуральные, то $a=b$. «Доказательство». При $n=1$: если $\max(a,b)=1$, то $a=b=1$. Предположим, что если $\max(a,b)=k$, то $a=b$. Пусть теперь $\max(a,b)=k+1$. Тогда $\max(a-1,b-1)=k$ значит, $a-1=b-1$. Следовательно, $a=b$, что и требовалось доказать.