$Mт\Phi 2$

7–8 класс 13.02.18

Малая теорема Ферма. Пусть a — некоторое число, которое не делится на простое число p. Тогда $a^{p-1} \equiv 1 \pmod{p}$.

- **1.** Докажите, что число $30^{239} + 239^{30}$ составное.
- **2.** Будет ли простым число $257^{1092} + 1092$?
- **3.** Найдите остаток числа $30^{99} + 63^{100} + 77^{101}$ при делении на 31.
- **4.** Для каких n число $n^{2017} n^5$ делится на 11?
- **5.** Утверждение, обратное малой теореме Ферма, вообще говоря, неверно. Пусть a некоторое число, взаино простое с n = 561. Проверьте, что выполняется сравнение $a^{n-1} \equiv 1 \pmod{n}$.
- **6.** Пусть p и q различные простые числа. Докажите, что $p^q + q^p \equiv p + q \pmod{pq}$.
- 7. Докажите, что для любого простого $p\geqslant 3$ число 7^p-5^p-2 делится на 6p. (Рассмотрите отдельно случаи p=3 и p>3.)
- **8.** Докажите, что для любого простого $p\geqslant 5$ число 3^p-2^p-1 делится на 42p. (Рассмотрите отдельно случаи $p=5,\ p=7$ и p>7.)
- **9.** Докажите, что для любого простого p > 5 справедливо, что
 - (а) число $\underbrace{111...11}_{}$ делится на p;
 - **(b)** число $\underbrace{111...11}_{r}$ не делится на p;
 - (с) число $\underbrace{1 \dots 1}_{p} \underbrace{2 \dots 2}_{p} \underbrace{3 \dots 3}_{p} \dots \underbrace{9 \dots 9}_{p} -123 \dots 9$ делится на p.
- **10.** Докажите, что ни при каком целом k число $k^2 + k + 1$ не делится на 101.
- **11.** Пусть p>2 простое число. Докажите, что сумма остатков от деления чисел $1^p, 2^p, \dots, (p-1)^p$ на p^2 равна $(p^3-p^2)/2$
- **12.** Докажите, что для любого простого p число $2^{2^p}-4$ делится на 2^p-1 .