Серия 22. Комплексные координаты.

- **1.** (*Теорема Ньютона*) Докажите, что центр вписанной в четырёхугольник окружности лежит на прямой, соединяющей середины диагоналей этого четырёхугольника.
- **2.** Докажите, что середины трех отрезков, соединяющих проекции произвольной точки плоскости на пары противоположных сторон или диагоналей вписанного в окружность четырехугольника, лежат на одной прямой.
- **3.** Остроугольный неравнобедренный треугольник ABC вписан в окружность ω с центром O. Прямая AO вторично пересекает ω в точке A'. Касательная к ω , восстановленная в точке A', пересекает BC в точке X. Прямая XO пересекает стороны AB и AC в точках P и Q. Докажите, что O середина PQ.
- **4.** На окружности ω отмечены две точки A и B. Касательные к ω к точкам A и B пересекаются в точке S. Хорда XY окружности ω проходит через середину M отрезка AB. Докажите, что $\angle XSM = \angle MSY$.
- **5.** В выпуклом четырёхугольнике ABCD углы при вершинах A, B, C равны. Докажите, что прямая Эйлера треугольника ABC проходит через D.
- 6. Из основания A_1 биссектрисы AA_1 неравнобедренного треугольника ABC провели вторую касательную ко вписанной окружности, точку касания обозначили K_A . Аналогично строятся точки K_B , K_C . Докажите, что прямые, соединяющие K_A , K_B , K_C с серединами соответствующих сторон треугольника, пересекаются в точке, лежащей на вписанной в треугольник окружности.

Общие формулы. Условие типа $z \in \mathbb{R}$ равносильно соотношению $z = \bar{z}$.

- $|AB|^2 = (a-b)(\bar{a}-\bar{b});$
- A,B,C коллинеарны $\iff \frac{a-b}{a-c} \in \mathbb{R}$
- $AB \parallel CD \iff \frac{a-b}{c-d} \in \mathbb{R}$.
- $AB \perp CD \iff \frac{a-b}{c-d} \in i\mathbb{R}$.
- $\angle A_1 B_1 C_1 = \angle A_2 B_2 C_2 \iff \frac{a_1 b_1}{c_1 b_1} : \frac{a_2 b_2}{c_2 b_2} \in \mathbb{R}.$
- A,B,C,D коцикличны $\iff \frac{a-c}{b-c}: \frac{a-d}{b-d} \in \mathbb{R}.$
- Формула для скалярного произведения $(u, v) = \frac{1}{2} \cdot (u\bar{v} + v\bar{u}).$
- M середина $AB \iff m = \frac{a+b}{2}$.
- M на отрезке AB такова, что $AM/MB = \lambda/\mu \iff m = \frac{\mu}{\lambda + \mu} \cdot a + \frac{\lambda}{\lambda + \mu} \cdot b$.
- M точка пересечения медиан треугольника $ABC \Longleftrightarrow m = \frac{a+b+c}{3}$.

Формулы для работы с единичной окружностью Ω .

- $Z \in \Omega \iff z\bar{z} = 1$.
- $AB \perp CD \ (A, B, C, D \in \Omega) \iff ab + cd = 0.$
- $Z \in \overline{AB \ (A, B \in \Omega)} \iff z + ab\overline{z} = a + b.$
- ZA касается Ω $(A \in \Omega) \Longleftrightarrow z + a^2 \bar{z} = 2a$.
- Z точка пересечения касательных к A и B к $\Omega \Longleftrightarrow z = \frac{2ab}{a+b}$.
- K основание перпендикуляра из Z на AB $(A,B\in\Omega)\Longleftrightarrow k=\frac{a+b+z-ab\bar{z}}{2}.$
- H ортоцентр ABC $(A, B, C \in \Omega) \iff h = a + b + c$.