Кружок в "Хамовниках". 2017-2018 учебный год. 9 класс. Группа 9-1.

Серия 37. Инверсия.

- 0. а) Прямая, проходящяя через центр инверсии, переходит в прямую
- b) Окружность, проходящяя через центр инверсии, переходит в прямую
- с) Прямая, не проходящяя через центр инверсии, переходит в окружность
- d) Окружность, не проходящяя через центр инверсии, переходит в окружность Обобщённой окружностью будем называть окружность или прямую.
- е) Касающиеся обобщённые окружности переходят в касающиеся обобщённые окружности (касающимися прямыми будем называть параллельные)
- 1. Углом между окружностями назовём угол между касательными к ним в данной точке. Докажите, что угол между касающимися обобщёнными окружностями сохраняется при инверсии.
- **2.** Окружности ω_1 , ω_2 , ω_3 и ω_4 таковы, что ω_2 и ω_4 касаются каждой из окружностей ω_1 и ω_3 . Докажите, что точки касания лежат на одной окружности или прямой .
- **3.** Дана полуокружность ω с диаметром PQ. Окружность α касается ω внутренним образом и отрезка PQ в точке C. Прямая l перпендикулрна PQ и касается α . Пусть она пересекает дугу ω в точке A и отрезок PQ в точке B. Докажите, что AC делит угол PAB пополам.
- **4.** Окружности ω_1 и ω_2 одинакового радиуса пересекаются в точках X_1 и X_2 . Окружность ω касается окружности ω_1 внешним образом в точке T_1 и окружности ω_2 внутренним образом в точке T_2 . Докажите, что прямые X_1T_1 и X_2T_2 пересекаются на окружности ω .
- **5.** а) Точки P' и Q' образы точек P и Q при инверсии относительно окружности с центром O радиуса R. Докажите, что $P'Q' = PQ \cdot \frac{R^2}{OP \cdot OQ}$
- b) Неравенство Птолемея. Даны произвольные 4 точки A,~B,~C и D. Докажите, что $AC \cdot BC \leq AD \cdot BC + AB \cdot CD$
- **6.** Дан треугольник ABC. Окружность γ вписана в угол ABC и касается описанной окружности ABC в точке P. Вневписанная в угол B окружность касается стороны AC в точке Q. Докажите, что $\angle ABP = \angle CBQ$.
- 7. Дан треугольник ABC. Обозначим через I центр вписанной окружности. Пусть A_1 , B_1 и C_1 точки касания с соответствующими сторонами. Докажите, что центры описанных окружностей треугольников AIA_1 , BIB_1 и CIC_1 лежат на одной прямой.