Теорема о трёх центрах гомотетии

10 класс 24.09.2016

Зафиксируем на плоскости точку O. Каждой точке X плоскости соответствует её радиус-вектор \overrightarrow{OX} , который мы будем обозначать \mathbf{x} . Обратно, каждому вектору \mathbf{x} соответствует точка $X = O + \mathbf{x}$.

Гомотетия с центром A и коэффициентом k обозначается символом H_A^k . Векторное равенство $\overrightarrow{AH_A^k(X)} = k\overrightarrow{AX}$, определяющее гомотетию, в введённых обозначениях перепишется в виде

$$H_A^k(\mathbf{x}) = k(\mathbf{x} - \mathbf{a}) + \mathbf{a} = k\mathbf{x} + \mathbf{b},$$

где $\mathbf{b} = (1 - k)\mathbf{a}$ — некоторый вектор.

Теорема. Пусть k — ненулевое вещественное число, а \mathbf{b} — вектор. Тогда геометрическое преобразование, заданное формулой $f(\mathbf{x}) = k\mathbf{x} + \mathbf{b}$, является при $k \neq 1$ гомотетией с коэффициентом k и при k = 1 параллельным переносом на вектор \mathbf{b} .

Теорема. Композицией $H_B^l \circ H_A^k$ двух гомотетий H_A^k и H_B^l при $kl \neq 1$ служит некоторая гомотетия H_C^{kl} , причём точки A, B, C лежат на одной прямой или совпадают. При kl = 1 $H_B^l \circ H_A^k$ есть параллельный перенос на вектор, коллинеарный вектору \overrightarrow{AB} .

Теорема. [О трёх центрах гомотетии] Если композицией трёх гомотетии является тождественное преобразование плоскости, то их центры лежат на одной прямой или совпадают.

- 1. Докажите теорему о трёх центрах гомотетии.
- 2. На плоскости нарисованы три непересекающихся неравных круга. Для каждой пары кругов отметили две точки пересечения общих касательных: одну внешних, вторую внутренних. а) (*Teopema o mpëx колпаках*) Докажите, что точки пересечения внешних общих касательных лежат на одной прямой. б) Докажите, что если центры кругов не лежат на одной прямой, то все шесть отмеченных точек служат вершинами *четырёхстронника* (т. е. лежат по три на четырёх прямых).
- **3.** Семейство окружностей касается двух данных неравных окружностей внутренним образом в точках A, B соответственно. Докажите, что все прямые AB проходят через одну точку.
- **4.** На продолжении стороны CD трапеции ABCD $(AD \parallel BC)$ за точку D отмечена точка P, M середина AD. Прямые PM и AC пересекаются в Q, PB и AD в X, а BQ и AD в Y. Докажите, что M середина XY.
- **5.** Внутри треугольника ABC расположены три непересекающихся круга: ω_A , ω_B , ω_C . Каждый из них касается двух соответственных сторон треугольника. Круг ω касается внешним образом их всех в точках A', B', C' соответственно. Докажите, что прямые AA', BB', CC' пересекаются в одной точке.
- 6. Дан выпуклый четырёхугольник ABCD. Вписанная окружность треугольника ABC касается сторон в точках A_1 , B_1 , C_1 . Вписанная окружность треугольника ADC касается сторон в точках A_2 , D_2 , C_2 . Оказалось, что $B_1 = D_2$. а) Докажите, что прямые BD, A_1A_2 , C_1C_2 пересекаются в одной точке или параллельны. б) Докажите, что линия центров окружностей проходит через ту же точку или параллельна им всем.
- 7. Дан выпуклый четырёхугольник ABCD. Лучи AB, DC пересекаются в точке P, а лучи AD, BC в Q. Из точек P и Q внутрь углов APD и AQB проведено ещё по два луча, разбивающие четырёхугольник ABCD на девять частей. Известно, что в части, примыкающие к вершинам B, C, D, можно вписать окружность. Докажите, что в часть, примыкающую к вершине A, тоже можно вписать окружность.
- 8. В угол с вершиной O вписаны две окружности ω_1 и ω_2 . Луч с началом в точке O пересекает ω_1 в точках A_1 и B_1 , а ω_2 в точках A_2 и B_2 так, что $OA_1 < OB_1 < OA_2 < OB_2$. Окружность γ_1 касается внутренним образом окружности ω_1 и касательных к ω_2 , проведённых из A_1 . Окружность γ_2 касается внутренним образом окружности ω_2 и касательных к ω_1 , проведённых из B_2 . Докажите, что окружности γ_1 и γ_2 равны.
- **9.** В выпуклом четырёхугольнике ABCD выполнено AB + AD = CB + CD. В треугольники ABC, CDA вписаны окружности с центрами I_1 , I_2 . Докажите, что AC, BD, I_1I_2 пересекаются в одной точке.
- 10. Point P lies on side AB of a convex quadrilateral ABCD. Let ω be the incircle of triangle CPD, and let I be its incenter. Suppose that ω is tangent to the incircles of triangles APD and BPC at points K and L, respectively. Let lines AC and BD meet at E, and let lines AK and BL meet at F. Prove that points E, I, and F are collinear.