9 класс

- **1.** Пусть P(x) многочлен с целыми коэффициентами и $P(2) \vdots 2$, $P(3) \vdots 3$, $P(5) \vdots 5$. Докажите, что $P(30) \vdots 30$.
- **2.** Докажите, что для любого многочлена P(x) с целыми коэффициентами и любого натурального числа k существует натуральное n такое, что сумма $P(1) + P(2) + \ldots + P(n)$ делится на k.

Определение. Многочлен P(x) называется npusodumым над множеством M, если он может быть представлен в виде P(x) = Q(x)R(x), где Q(x) и R(x) — многочлены ненулевой степени с коэффициентами из M.

- **3.** Лемма Гаусса. Пусть многочлен P(x) с целыми коэффициентами приводим над \mathbb{Q} . Докажите, что он приводим и над \mathbb{Z} .
- **4.** Пусть p простое число. Разложите многочлен x^p-1 на неприводимые над $\mathbb O$ множители.
- **5.** Пусть P(x) многочлен степени n>1 с целыми коэффициентами, k натуральное число. Рассмотрим многочлен $Q_k(x)=P(...P(P(x))...)$ (многочлен P применён k раз). Докажите, что многочлен $Q_k(x)-x$ имеет не более n целых корней.
- **6.** Целые числа a, b и c таковы, что числа a/b + b/c + c/a и a/c + c/b + b/a тоже целые. Докажите, что |a| = |b| = |c|.
- 7. (а) Докажите, что если квадратные трехчлены с целыми коэффициентами $x^2 + p_1 x + q_1$, $x^2 + p_2 x + q_2$ имеют общий нецелый корень, то $p_1 = p_2$ и $q_1 = q_2$.
- (b) Пусть приведенные многочлены P(x), Q(x) с целыми коэффициентами имеют общий нецелый корень α . Докажите, что тогда они имеют еще один общий нецелый корень $\beta \neq \alpha$.
- 8. Пусть P(x) многочлен степени n, принимающий целые значения в целых точках.
 - (a) Правда ли, что P(x) обязательно имеет целые коэффициенты?
 - (b) Докажите, что многочлен n!P(x) имеет целые коэффициенты.
- **9.** (a) Могут ли все значения многочлена с целыми коэффициентами быть простыми числами?
 - (b) Тот же вопрос для многочлена с вещественными коэффициентами.

- **1.** Пусть P(x) многочлен с целыми коэффициентами и $P(2) \vdots 2$, $P(3) \vdots 3$, $P(5) \vdots 5$. Докажите, что $P(30) \vdots 30$.
- **2.** Докажите, что для любого многочлена P(x) с целыми коэффициентами и любого натурального числа k существует натуральное n такое, что сумма $P(1) + P(2) + \ldots + P(n)$ делится на k.

Определение. Многочлен P(x) называется npиводимым над множеством M, если он может быть представлен в виде P(x) = Q(x)R(x), где Q(x) и R(x) — многочлены ненулевой степени с коэффициентами из M.

- **3.** Лемма Гаусса. Пусть многочлен P(x) с целыми коэффициентами приводим над \mathbb{Q} . Докажите, что он приводим и над \mathbb{Z} .
- **4.** Пусть p простое число. Разложите многочлен x^p-1 на неприводимые над $\mathbb Q$ множители.
- **5.** Пусть P(x) многочлен степени n>1 с целыми коэффициентами, k натуральное число. Рассмотрим многочлен $Q_k(x)=P(...P(P(x))...)$ (многочлен P применён k раз). Докажите, что многочлен $Q_k(x)-x$ имеет не более n целых корней.
- **6.** Целые числа a, b и c таковы, что числа a/b + b/c + c/a и a/c + c/b + b/a тоже целые. Докажите, что |a| = |b| = |c|.
- 7. (а) Докажите, что если квадратные трехчлены с целыми коэффициентами $x^2 + p_1 x + q_1$, $x^2 + p_2 x + q_2$ имеют общий нецелый корень, то $p_1 = p_2$ и $q_1 = q_2$.
- (b) Пусть приведенные многочлены P(x), Q(x) с целыми коэффициентами имеют общий нецелый корень α . Докажите, что тогда они имеют еще один общий нецелый корень $\beta \neq \alpha$.
- **8.** Пусть P(x) многочлен степени n, принимающий целые значения в целых точках.
 - (a) Правда ли, что P(x) обязательно имеет целые коэффициенты?
 - **(b)** Докажите, что многочлен n!P(x) имеет целые коэффициенты.
- 9. (а) Могут ли все значения многочлена с целыми коэффициентами быть простыми числами?
 - (b) Тот же вопрос для многочлена с вещественными коэффициентами.