Скалярное произведение

группа 10-1 16.02.2017

Пусть в линейно пространстве V над полем \mathbb{R} фиксирован базис $\mathbf{e}_1, \mathbf{e}_2, \dots \mathbf{e}_n$.

Определение. Скалярным произведением назовём отображение (\cdot,\cdot) : $V\times V\to\mathbb{R}$, определённое

$$(\mathbf{x}, \mathbf{y}) = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n,$$

где (x_1, x_2, \ldots, x_n) и (y_1, y_2, \ldots, y_n) — координаты в базисе $\mathbf{e}_1, \mathbf{e}_2, \ldots \mathbf{e}_n$ векторов \mathbf{x} и \mathbf{y} соответственно. Длину вектора \mathbf{v} определим формулой $|\mathbf{v}| = \sqrt{(\mathbf{v}, \mathbf{v})}$. Векторы \mathbf{u}, \mathbf{v} ортогональны, если $(\mathbf{u}, \mathbf{v}) = 0$.

Обратите внимание, что в отличие от предыдущий листиков по линейной алгебре, числовое поле \mathbb{K} , над которым построено пространство V, теперь обязательно должно быть полем вещественных чисел \mathbb{R} (а не \mathbb{C} и не \mathbb{Z}_p). В противном случае некоторые свойства скалярного произведения теряют истинность или смысл.

- 1. Убедитесь, что скалярное произведение обладает следующими свойствами.
 - (1) При всех $\lambda, \mu \in \mathbb{R}$ и $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ выполнено $(\lambda \mathbf{u} + \mu \mathbf{v}, \mathbf{w}) = \lambda(\mathbf{u}, \mathbf{w}) + \mu(\mathbf{v}, \mathbf{w})$.
 - (2) Для любых $\mathbf{u}, \mathbf{v} \in V$ верно $(\mathbf{u}, \mathbf{v}) = (\mathbf{v}, \mathbf{u})$.
 - (3) Для все $\mathbf{v} \in V$ выполнено $(\mathbf{v}, \mathbf{v}) \geqslant 0$, причём $(\mathbf{v}, \mathbf{v}) = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$.

Можно доказать, что для любого отображения (\cdot,\cdot) : $V \times V \to \mathbb{R}$, удовлетворяющего этим аксиомам, существует базис $\mathbf{e}_1, \mathbf{e}_2, \dots \mathbf{e}_n$, в котором это отображение записывается формулой $(\mathbf{x}, \mathbf{y}) = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$. Таким образом, скалярное произведение можно было определить число аксиоматически.

- 2. Докажите, что если несколько ненулевых векторов попарно ортогональны, то они линейно независимы.
- 3. В городе k супружеских пар и n клубов. Известно, что для любой пары из мужчины и женщины количество клубов, в которых они оба бывали, нечётно тогда и только тогда, когда они муж и жена. Докажите, что $n \geqslant k$.
- 4. Несколько школьников писали региональный этап всероссийской олимпиады из 8 задач. Каждый школьник решил 4 задачи. Оказалось, что любые два школьника ровно две задачи решили оба и ровно две задачи не решили оба. Какое максимальное число школьников могло быть?
- 5. Школьники с переменным успехов появлялись на математическом кружке. К концу года выяснилось, что каждый из школьников пробил ровно n занятий, а любые два школьника пробили одновременно ровно k < n занятий. Докажите, что занятий в году было не меньше числа школьников в группе.
- 6. В ботаническом определителе растения описываются ста признаками. Каждый из признаков может либо присутствовать, либо отсутствовать. Определитель считается *хорошим*, если любые два растения различаются более чем по половине признаков. Доказать, что в хорошем определителе не может быть описано более 50 растений.