Гомотетия-3

9 класс 19.12.2015

- 1. На основаниях BC и AD трапеции ABCD вне неё построены равносторонние треугольники BCX и ADY. Докажите, что XY проходит через точку пересечения диагоналей трапеции.
- 2. Дан угол и точка внутри него. Циркулем и линейкой постройте окружность, касающуюся сторону угла и проходящую через данную точку.
- 3. Вписанная в треугольник ABC окружность с центром I касается стороны BC в точке A_1 , середина BC обозначена за M. Докажите, что прямая MI делит отрезок AA_1 пополам.
- 4. Четырёхугольник диагоналями разрезан на четыре треугольника. Докажите, что точки пересечения медиан этих треугольников служат вершинами параллелограмма.
- 5. Вписанная и вневписанная окружности ω и ω_A треугольника ABC касаются прямых BC, CA, AB в точках A_1 , B_1 , C_1 и A_2 , B_2 , C_2 соответственно. Пусть X и Y проекции точек A_1 и A_2 на прямые B_1C_1 и B_2C_2 соответственно. Докажите, что $\angle BAY = \angle XAC$.
- 6. Докажите, что внутри выпуклого многоугольника можно разместить две его копии, уменьшенные в два раза, не имеющие общих внутренних точек.
- 7. В углы CAB, ABC, BCA треугольника ABC вписаны равные непересекающиеся окружности ω_A , ω_B , ω_C . Окружность ω касается их всех внешним образом. Докажите, что центр ω лежит на прямой, соединяющей центры вписанной и описанной окружностей треугольника ABC.

Гомотетия-3

9 класс 19.12.2015

- 1. На основаниях BC и AD трапеции ABCD вне неё построены равносторонние треугольники BCX и ADY. Докажите, что XY проходит через точку пересечения диагоналей трапеции.
- 2. Дан угол и точка внутри него. Циркулем и линейкой постройте окружность, касающуюся сторону угла и проходящую через данную точку.
- 3. Вписанная в треугольник ABC окружность с центром I касается стороны BC в точке A_1 , середина BC обозначена за M. Докажите, что прямая MI делит отрезок AA_1 пополам.
- 4. Четырёхугольник диагоналями разрезан на четыре треугольника. Докажите, что точки пересечения медиан этих треугольников служат вершинами параллелограмма.
- 5. Вписанная и вневписанная окружности ω и ω_A треугольника ABC касаются прямых BC, CA, AB в точках A_1 , B_1 , C_1 и A_2 , B_2 , C_2 соответственно. Пусть X и Y проекции точек A_1 и A_2 на прямые B_1C_1 и B_2C_2 соответственно. Докажите, что $\angle BAY = \angle XAC$.
- 6. Докажите, что внутри выпуклого многоугольника можно разместить две его копии, уменьшенные в два раза, не имеющие общих внутренних точек.
- 7. В углы CAB, ABC, BCA треугольника ABC вписаны равные непересекающиеся окружности ω_A , ω_B , ω_C . Окружность ω касается их всех внешним образом. Докажите, что центр ω лежит на прямой, соединяющей центры вписанной и описанной окружностей треугольника ABC.