Цепные дроби

Выражение

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots + \frac{1}{a_n}}},$$

где a_0 — целое, a_1, \ldots, a_n — натуральные, и $a_n > 1$, называется *цепной дробью*. Для краткости обозначают это через $[a_0; a_1, \ldots, a_n]$.

- 1. Представьте в виде цепной дроби число $\frac{129}{111}$.
- 2. Решите в натуральных числах уравнение

$$\frac{10}{7} = a + \frac{1}{b + \frac{1}{c}}$$

- 3. Пусть $\frac{p_n}{q_n} = [1;1,1,\ldots,1]$ (единиц n штук) несократимая дробь. Чему равны p_n и q_n ?
- 4. Пусть n>k. Какое из чисел $[a_0;a_1,\ldots,a_k]$ и $[a_0;a_1,\ldots,a_n]$ больше?
- 5. Пусть есть длинная цепная дробь $[a_0; a_1, \ldots, a_n]$. Для всякого $k \leqslant n$ можно определить nodxodsuyoo dpobb $\frac{p_k}{q_k} = [a_0; a_1, \ldots, a_k]$. Выразите p_k и q_k через p_{k-2} , $q_{k-2}, p_{k-1}, q_{k-1}$ и a_k .
- 6. Докажите, что $p_k q_{k-1} p_{k-1} q_k = (-1)^{k+1}$.
- 7. (а) Докажите, что $\frac{p_k}{q_k} \frac{p_{k-1}}{q_{k-1}} = \frac{(-1)^{k+1}}{q_k q_{k-1}}$.
 - (b) Пусть $x = [a_0; a_1, a_2, \ldots]$. Докажите, что $\left| x \frac{p_k}{q_k} \right| < \frac{1}{q_k^2}$.
- 8. А чему равно

$$1 + \frac{1}{2 + \frac{1}{1 + \frac{1}{2 + \cdots}}}?$$

- 9. (a) Придумайте бесконечную цепную дробь для числа $\sqrt{2}$.
 - (b) Найдите с помощью этого разложения рациональное число, отличающееся от $\sqrt{2}$ меньше, чем на 0.01.