- **1.** В ряд выложено n монет решками вверх. Два игрока по очереди выбирают монету и переворачивают её. Расположение орлов и решек не должно повторяться. Проигрывает тот, кто не может сделать ход. Кто из игроков может всегда выигрывать, как бы ни играл его соперник?
- **2.** Про пирамиду $SA_1A_2...A_n$ (n > 5) известно, что её основание $A_1A_2...A_n$ правильный n-угольник, а все боковые грани равнобедренные треугольники (равные стороны не обязательно с вершиной S). Обязательно ли эта пирамида правильная?
- 3. В кинотеатре два зала с одинаковым числом мест. В каждом зале несколько рядов (места в любом ряду нумеруются подряд, начиная с единицы). Группа школьников побывала на утреннем сеансе в первом зале, а на дневном сеансе во втором, оба раза заняв все места. Известно, что в первом зале есть ряд из 10 мест, а во втором нет. Докажите, что найдутся два школьника, которые на одном из сеансов сидели в одном ряду, а на другом имели одинаковый номер места.
- **4.** На плоскости дана окружность ω_1 радиуса 1. На одной из её хорд, как на диаметре, построена окружность ω_2 . На одной из хорд ω_2 , как на диаметре, построена окружность ω_3 , и т. д. Найдите наибольшее возможное расстояние между двумя точками, одна из которых принадлежит ω_1 , а другая принадлежит $\omega_{1000000}$.
- **5.** Конечно или бесконечно множество натуральных чисел, у которых как в десятичной записи, так и в семеричной записи нет нуля?
- 6. Подмножество студенческой группы назовём идеальной компанией, если
 - 1) в этом подмножестве все девушки нравятся всем юношам;
 - 2) в это подмножество нельзя никого добавить, не нарушив условие 1.
- В некой группе учатся 9 студенток и 15 студентов. Староста группы составил список всевозможных идеальных компаний в этой группе. Какое наибольшее число компаний могло оказаться в этом списке?
- 7. Обозначим через $[a_1,a_2,\ldots,a_n]$ произведение всевозможных попарных разностей a_i-a_j , где $1\leqslant i< j\leqslant n$. Докажите, что для любых натуральных a_1,a_2,\ldots,a_n число $[a_1,a_2,\ldots,a_n]$ делится на $[1,2,\ldots,n]$.
- 8. Вписанная окружность касается сторон BC, CA, AB треугольника ABC в точках A_1 , B_1 , C_1 . Вневписанная окружность касается стороны BC и продолжений сторон CA, AB в точках A_2 , B_2 , C_2 . Через середины отрезков A_1B_1 , A_2B_2 провели прямую l_1 , а через середины отрезков A_1C_1 , A_2C_2 провели прямую l_2 . Докажите, что l_1 и l_2 пересекаются на высоте AH треугольника ABC.

- 1. В ряд выложено n монет решками вверх. Два игрока по очереди выбирают монету и переворачивают её. Расположение орлов и решек не должно повторяться. Проигрывает тот, кто не может сделать ход. Кто из игроков может всегда выигрывать, как бы ни играл его соперник?
- **2.** Про пирамиду $SA_1A_2...A_n$ (n > 5) известно, что её основание $A_1A_2...A_n$ правильный n-угольник, а все боковые грани равнобедренные треугольники (равные стороны не обязательно с вершиной S). Обязательно ли эта пирамида правильная?
- 3. В кинотеатре два зала с одинаковым числом мест. В каждом зале несколько рядов (места в любом ряду нумеруются подряд, начиная с единицы). Группа школьников побывала на утреннем сеансе в первом зале, а на дневном сеансе во втором, оба раза заняв все места. Известно, что в первом зале есть ряд из 10 мест, а во втором нет. Докажите, что найдутся два школьника, которые на одном из сеансов сидели в одном ряду, а на другом имели одинаковый номер места.
- **4.** На плоскости дана окружность ω_1 радиуса 1. На одной из её хорд, как на диаметре, построена окружность ω_2 . На одной из хорд ω_2 , как на диаметре, построена окружность ω_3 , и т. д. Найдите наибольшее возможное расстояние между двумя точками, одна из которых принадлежит ω_1 , а другая принадлежит $\omega_{1000000}$.
- **5.** Конечно или бесконечно множество натуральных чисел, у которых как в десятичной записи, так и в семеричной записи нет нуля?
- 6. Подмножество студенческой группы назовём идеальной компанией, если
 - 1) в этом подмножестве все девушки нравятся всем юношам;
 - 2) в это подмножество нельзя никого добавить, не нарушив условие 1.
- В некой группе учатся 9 студенток и 15 студентов. Староста группы составил список всевозможных идеальных компаний в этой группе. Какое наибольшее число компаний могло оказаться в этом списке?
- 7. Обозначим через $[a_1, a_2, \ldots, a_n]$ произведение всевозможных попарных разностей $a_i a_j$, где $1 \le i < j \le n$. Докажите, что для любых натуральных a_1, a_2, \ldots, a_n число $[a_1, a_2, \ldots, a_n]$ делится на $[1, 2, \ldots, n]$.
- 8. Вписанная окружность касается сторон BC, CA, AB треугольника ABC в точках A_1 , B_1 , C_1 . Вневписанная окружность касается стороны BC и продолжений сторон CA, AB в точках A_2 , B_2 , C_2 . Через середины отрезков A_1B_1 , A_2B_2 провели прямую l_1 , а через середины отрезков A_1C_1 , A_2C_2 провели прямую l_2 . Докажите, что l_1 и l_2 пересекаются на высоте AH треугольника ABC.