- 1. 10 спортсменов провели турнир по настольному теннису в один круг. Докажите, что сумма квадратов количеств их побед равна сумме квадратов количеств их поражений.
- **2.** Существует ли функция f, отличная от константы, такая, что для всех действительных x, для которых $\cos x \neq 0$, справедливо $f(\operatorname{tg} x) = f(\frac{1}{\cos x})$?
- 3. В окно комнаты светит солнце, а в комнате неподвижно висит в воздухе четырёхзвенная замкнутая ломаная. Её тень на стене имеет форму параллелограмма. Через некоторое время тень передвинулась, но по-прежнему осталась параллелограммом. Докажите, что и сама ломаная параллелограмм. (Считайте, что солнечные лучи параллельны друг другу.)
- 4. Каждому из трёх мудрецов написали на лбу натуральное число, причём одно из этих чисел являлось суммой двух других, и сообщили им об этом. Мудрец не видит, что написано у него на лбу, но видит, что написано у двух других. Первый мудрец сказал, что не может догадаться, какое число написано у него на лбу. После этого то же самое сказал второй мудрец, а затем и третий. Тогда первый сказал: «Я знаю, что у меня на лбу написано число 50». Какие числа написаны у двух остальных?
- **5.** Бесконечная последовательность натуральных чисел $\{a_n\}$ такова, что $a_1 = a$, $a_{n+1} = a^{a_n}$. m некоторое натуральное число. Докажите, что последовательность остатков при делении a_n на m стабилизируется (то есть, все остатки с какого-то момента станут одинаковыми).
- **6.** В остроугольном неравнобедренном треугольнике ABC отметили середины C_1 , B_1 , A_1 сторон AB, AC, BC соответственно. Серединные перпендикуляры к AB и AC пересекают AA_1 в точках B_2 , C_2 соответственно. Прямые BB_2 и CC_2 пересекаются в точке X, лежащей внутри треугольника. Докажите, что точки A, B_1 , C_1 , X лежат на одной окружности.
- **7.** Для натурального n>1 рассмотрим множество $A=\{1,2,3,\dots 2^n\}$. Найдите количество подмножеств $B\subset A$ таких, что для любых двух различных чисел из A, сумма которых равна степени двойки, ровно одно из них принадлежит B.

11 класс Разнобой 8 октября 2015

- 1. 10 спортсменов провели турнир по настольному теннису в один круг. Докажите, что сумма квадратов количеств их побед равна сумме квадратов количеств их поражений.
- **2.** Существует ли функция f, отличная от константы, такая, что для всех действительных x, для которых $\cos x \neq 0$, справедливо $f(\lg x) = f(\frac{1}{\cos x})$?
- 3. В окно комнаты светит солнце, а в комнате неподвижно висит в воздухе четырёхзвенная замкнутая ломаная. Её тень на стене имеет форму параллелограмма. Через некоторое время тень передвинулась, но по-прежнему осталась параллелограммом. Докажите, что и сама ломаная параллелограмм. (Считайте, что солнечные лучи параллельны друг другу.)
- 4. Каждому из трёх мудрецов написали на лбу натуральное число, причём одно из этих чисел являлось суммой двух других, и сообщили им об этом. Мудрец не видит, что написано у него на лбу, но видит, что написано у двух других. Первый мудрец сказал, что не может догадаться, какое число написано у него на лбу. После этого то же самое сказал второй мудрец, а затем и третий. Тогда первый сказал: «Я знаю, что у меня на лбу написано число 50». Какие числа написаны у двух остальных?
- **5.** Бесконечная последовательность натуральных чисел $\{a_n\}$ такова, что $a_1 = a$, $a_{n+1} = a^{a_n}$. m некоторое натуральное число. Докажите, что последовательность остатков при делении a_n на m стабилизируется (то есть, все остатки с какого-то момента станут одинаковыми).
- **6.** В остроугольном неравнобедренном треугольнике ABC отметили середины C_1 , B_1 , A_1 сторон AB, AC, BC соответственно. Серединные перпендикуляры к AB и AC пересекают AA_1 в точках B_2 , C_2 соответственно. Прямые BB_2 и CC_2 пересекаются в точке X, лежащей внутри треугольника. Докажите, что точки A, B_1 , C_1 , X лежат на одной окружности.
- **7.** Для натурального n>1 рассмотрим множество $A=\{1,2,3,\dots 2^n\}$. Найдите количество подмножеств $B\subset A$ таких, что для любых двух различных чисел из A, сумма которых равна степени двойки, ровно одно из них принадлежит B.