- 1. P точка пересечения касательных в точках A и B к окружности ω с центром O. Через произвольную точку M на отрезке AB провели прямую, перпендикулярную OM. Эта прямая пересекла прямые PA и PB в точках C и D. Докажите, что M середина отрезка CD.
- **2.** На сторонах AB и AC треугольника ABC выбраны точки C_1 и B_1 соответственно такие, что $BC_1 = CB_1$. Докажите, что $BC > B_1C_1$.
- **3.** Точка A_1 середина дуги BC описанной окружности треугольника ABC, не содержащей точку A. Произвольная окружность, проходящая через точки A и A_1 , пересекает прямые AB и AC в точках P и Q. Пусть M и N середины отрезков BC и PQ соответственно. Докажите, что $MN \perp AA_1$.
- **4.** Дан тетраэдр ABCD, в нем I_a , I_b , I_c , I_d центры вписанных в треугольники BCD, ACD, ABD, ABC окружностей. Оказалось, что отрезки AI_a и BI_b пересекаются. Докажите, что отрезки CI_c и DI_d также пересекаются.
- **5.** В треугольнике ABC на дуге BC описанной окружности треугольника ABC выбрана произвольная точка P. Пусть H ортоцентр треугольника ABC, M середина PH, A' точка, симметричная A относительно M. Докажите, что P ортоцентр треугольника A'BC.
- 6. а) Можно ли точечный источник света закрыть тремя непрозрачными шарами?
 - **b)** А четырьмя?
 - с) А четырьмя непрозрачными шарами одинакового радиуса?
- 7. В углы B и C треугольника ABC вписаны окружности ω_b и ω_c с центрами P и Q соответственно. Оказалось, что $\angle BAQ = \angle CAP$. Докажите, что окружность, касающаяся ω_b и ω_c внешним образом и проходящая через A, касается описанной окружности треугольника ABC.

11 класс

Геометрический разнобой

10 сентября 2015

- 1. P точка пересечения касательных в точках A и B к окружности ω с центром O. Через произвольную точку M на отрезке AB провели прямую, перпендикулярную OM. Эта прямая пересекла прямые PA и PB в точках C и D. Докажите, что M середина отрезка CD.
- **2.** На сторонах AB и AC треугольника ABC выбраны точки C_1 и B_1 соответственно такие, что $BC_1 = CB_1$. Докажите, что $BC > B_1C_1$.
- **3.** Точка A_1 середина дуги BC описанной окружности треугольника ABC, не содержащей точку A. Произвольная окружность, проходящая через точки A и A_1 , пересекает прямые AB и AC в точках P и Q. Пусть M и N середины отрезков BC и PQ соответственно. Докажите, что $MN \perp AA_1$.
- **4.** Дан тетраэдр ABCD, в нем I_a , I_b , I_c , I_d центры вписанных в треугольники BCD, ACD, ABD, ABC окружностей. Оказалось, что отрезки AI_a и BI_b пересекаются. Докажите, что отрезки CI_c и DI_d также пересекаются.
- **5.** В треугольнике ABC на дуге BC описанной окружности треугольника ABC выбрана произвольная точка P. Пусть H ортоцентр треугольника ABC, M середина PH, A' точка, симметричная A относительно M. Докажите, что P ортоцентр треугольника A'BC.
- 6. а) Можно ли точечный источник света закрыть тремя непрозрачными шарами?
 - **b)** А четырьмя?
 - с) А четырьмя непрозрачными шарами одинакового радиуса?
- 7. В углы B и C треугольника ABC вписаны окружности ω_b и ω_c с центрами P и Q соответственно. Оказалось, что $\angle BAQ = \angle CAP$. Докажите, что окружность, касающаяся ω_b и ω_c внешним образом и проходящая через A, касается описанной окружности треугольника ABC.